$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Hermann Schwarz (25 janvier 1843 [Hermsdorf] - 30 novembre 1921 [Berlin])

Hermann Schwarz, dont le père était architecte, entre à l'Université de Berlin avec l'intention de préparer un diplôme de chimie. Mais les cours de Kümmer et de Weierstrass le font se tourner plutôt vers les mathématiques, et il prépare un doctorat sous la direction de Weierstrass. Il enseigne ensuite dans différentes universités, dont Zürich et Göttingen, avant de succéder à son maître à l'Université de Berlin en 1892.

Les travaux de Schwarz sont marqués par une forte interaction entre l'analyse et la géométrie. Son mémoire de thèse porte sur les surfaces d'aire minimale. En 1870, il donne la première démonstration correcte de l'existence de solutions au problème de Dirichlet en dimension 2. Ce faisant, il complète les travaux de Riemann sur les applications conformes En effet, Riemann avait démontré vers 1850 que tout ouvert simplement connexe du plan, différent du plan lui-même, pouvait être transformé par une application conforme en le disque unité. Sa démonstration utilisait une preuve erronée, écrite par Dirichlet lui-même, de l'existence de solutions au problème de Dirichlet. Schwarz a corrigé cette faille et produit une autre preuve plus élémentaire.

En 1884, il résout le problème isopérimétrique en dimension 3 (trouver une surface qui enferme un volume maximal pour une aire minimale). Dans ce travail, on trouve une méthode de construction de fonctions par approximations successives, idée qui sera reprise par Picard pour la résolution d'équations différentielles. Malheureusement, les recherches de Schwarz s'arrêtent vers 1890, année où il publie ses oeuvres complètes, alors qu'il enseignera jusqu'en 1918.

Sur un plan plus personnel, signalons que Schwarz fut marié avec la fille de Kümmer, et qu'il était pompier volontaire.

Les entrées du Dicomaths correspondant à Schwarz

Les mathématiciens contemporains de Schwarz (né en 1843)
  • Paul Appell (né en 1855)
  • Giulio Ascoli (né en 1843)
  • Cesare Burali-Forti (né en 1861)
  • William Burnside (né en 1852)
  • Georg Cantor (né en 1845)
  • Ernesto Cesàro (né en 1859)
  • Gaston Darboux (né en 1842)
  • Richard Dedekind (né en 1831)
  • Ulisse Dini (né en 1845)
  • Paul Du Bois-Reymond (né en 1831)
  • Gottlob Frege (né en 1848)
  • Georg Frobenius (né en 1849)
  • Josiah Willard Gibbs (né en 1839)
  • Jørgen Pedersen Gram (né en 1850)
  • Francis Guthrie (né en 1831)
  • Hermann Hankel (né en 1839)
  • David Hilbert (né en 1862)
  • Otto Hölder (né en 1859)
  • Adolf Hurwitz (né en 1859)
  • Johan Jensen (né en 1859)
  • Camille Jordan (né en 1838)
  • Félix Klein (né en 1849)
  • Sofia Kovaleskaya (née en 1850)
  • Edmond Laguerre (né en 1834)
  • Sophus Lie (né en 1842)
  • Rudolf Lipschitz (né en 1832)
  • Edouard Lucas (né en 1842)
  • Gösta Mittag-Leffler (né en 1846)
  • Max Noether (né en 1844)
  • Giuseppe Peano (né en 1858)
  • Karl Pearson (né en 1857)
  • Emile Picard (né en 1856)
  • Henri Poincaré (né en 1854)
  • Bernhard Riemann (né en 1826)
  • Eugène Rouché (né en 1832)
  • Thomas Stieltjes (né en 1856)
  • Ludwig Sylow (né en 1832)
  • Vito Volterra (né en 1860)