Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 03-08-2024 22:54:33

petitponey
Membre
Inscription : 03-08-2024
Messages : 4

Equivalent, suite

Bonsoir,
Voici l'exercice sur lequel je bloque depuis une treintaine de minutes :
Soit $(a_n)$ une suite de réels positifs ou nuls.
Montrer que : $(1+\frac{a_n}{n})^n \sim e^{a_n} \iff a_n = o(\sqrt{n})$.

J'ai établi le sens réciproque à l'aide d'un DL à l'ordre 2 à l'origine de ln(1+x), mais je n'arrive pas à avancer pour le sens direct : j'ai seulement obtenu le fait que $n ln(1+\frac{a_n}{n}) - a_n \rightarrow 0$....
Toute indication est donc la bienvenue, merci d'avance !

Hors ligne

#2 04-08-2024 14:48:32

Totototo
Invité

Re : Equivalent, suite

Bonjour,

Dans l'autre, même stratégie : un développement limité. Au préalable, il s'agit de montrer que la suite de terme général $a_n/n$ converge vers 0, pour pouvoir faire ce DL. Mais bonne nouvelle, si le résultat qu'on vous demande de démontrer est vrai, alors on a bien cette convergence.
Finalement, le sens direct se ramène à démontrer un résultat plus faible (a priori) que celui qu'on vous demande, à savoir que $(a_n/n)$ converge vers 0.
Pour ce faire, travailler à partir de la limite ce que vous avez obtenue et introduire/étudier la fonction qui a $x$ associe $\ln(1+x)-x$.

#3 04-08-2024 16:37:18

petitponey
Membre
Inscription : 03-08-2024
Messages : 4

Re : Equivalent, suite

Bonjour,
Merci beaucoup pour votre réponse ! J'ai reformulé la limite que j'avais obtenu en $\ln(1+\frac{a_n}{n}) - \frac{a_n}{n} \rightarrow 0$. L'étude de la fonction que vous m'avez proposé donne $\forall x > -1, \ln (1+x) \leq x$ avec égalité ssi x = 0. Mais je ne vois pas comment montrer que nécessairement $x \rightarrow 0$ si $\ln(1+x) - x \rightarrow 0$...

Dernière modification par petitponey (04-08-2024 16:38:02)

Hors ligne

#4 04-08-2024 16:54:53

Totototo
Invité

Re : Equivalent, suite

Il s'agit plutôt d'étudier si cette fonction est inversible (pour la composition) et la continuité de cette éventuelle inverse.
Si on note $f$ cette fonction alors vous avez obtenu $(f(a_n/n))$ tend vers  0, et il s'agit d'obtenir $(a_n/n)$ tend vers 0.

#6 04-08-2024 17:55:01

Totototo
Invité

Re : Equivalent, suite

Je viens de voir que ce résumé de cours est incomplet sans doute car non enseigné ???
Bref, sous les hypothèses bibmath (ie stricte monotonie et continuité) la fonction réciproque est continue. Ça devrait vous permettre de conclure si ça fait partie des outils enseignés ???

#7 04-08-2024 18:03:29

Totototo
Invité

Re : Equivalent, suite

#8 04-08-2024 18:15:41

petitponey
Membre
Inscription : 03-08-2024
Messages : 4

Re : Equivalent, suite

Oui en effet votre première réponse a suffit pour que je pense directement au théorème de la bijection ! On obtient alors par continuité de $f^{-1}$ en 0, $f^{-1}(f(\frac{a_n}{n})) \rightarrow 0$ i.e. $\frac{a_n}{n} \rightarrow 0$ et on conclut effectivement avec un DL.

Merci infiniment pour votre réactivité et désolé pour les réponses lentes de mon côté ^^

Hors ligne

#9 04-08-2024 18:20:01

Totototo
Invité

Re : Equivalent, suite

Ok, bonne continuation.

#10 04-08-2024 22:10:34

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 203

Re : Equivalent, suite

Ce résumé de cours est sans doute plus approprié :
https://www.bibmath.net/ressources/inde … nuite.html

F.

Hors ligne

#11 06-08-2024 12:31:09

Alfred V.
Membre
Inscription : 04-08-2024
Messages : 6

Re : Equivalent, suite

Totototo a écrit :

Bonjour,

Dans l'autre, même stratégie : un développement limité. Au préalable, il s'agit de montrer que la suite de terme général $a_n/n$ converge vers 0, pour pouvoir faire ce DL. Mais bonne nouvelle, si le résultat qu'on vous demande de démontrer est vrai, alors on a bien cette convergence.
Finalement, le sens direct se ramène à démontrer un résultat plus faible (a priori) que celui qu'on vous demande, à savoir que $(a_n/n)$ converge vers 0.
Pour ce faire, travailler à partir de la limite ce que vous avez obtenue et introduire/étudier la fonction qui a $x$ associe $\ln(1+x)-x$.

Est-ce que vous pourriez expliciter le DL en question s'il vous plait (j'ai l'impression que celui de ln(1+x) ne mène à rien...) ? Merci

Hors ligne

#12 06-08-2024 12:52:31

Totototo
Invité

Re : Equivalent, suite

Bonjour,

Un DL à l'ordre 2 de $\ln(1+x)$ en 0 donne un équivalent de $f(x)$ au voisinage de 0.
En combinant cet équivalent avec
1) la suite $(nf(a_n/n))$ converge vers 0 (message 1 petitponey) et
2) la suite $(a_n/n)$ converge vers 0,
Conclure.

#13 06-08-2024 13:30:35

Alfred V.
Membre
Inscription : 04-08-2024
Messages : 6

Re : Equivalent, suite

Cela suffit amplement pour conclure en effet, merci beaucoup

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt deux moins soixante quinze
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums