Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 03-04-2022 10:44:56

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 186

Mêmes chiffres

Bonjour,

  Voici une énigme que l'on m'a soumise et que je n'ai pas vérifié :
parmi les nombres à 3 chiffres, seuls deux possèdent les mêmes chiffres quand on leur soustrait 25%.
Lesquels et surtout pourquoi?

F.

Hors ligne

#2 03-04-2022 11:22:13

Bernard-maths
Membre
Lieu : 34790 Grabels
Inscription : 18-12-2020
Messages : 1 443

Re : Mêmes chiffres

Bonjour Fred !

Très amusant ! Pour commencer j'en ai trouvé un ...  et je vais en trouver d'autre(s) !!! J'en ai au moins 4 !

Mais je laisse chercher les AUTRES !

Il y a permutation circulaire sur les chiffres ...

Dernière modification par Bernard-maths (03-04-2022 12:12:43)


Ma philosophie est immuable : l'immobilisme tue ...
Les Anciens ont trouvé le plus facile ... il nous reste le plus dur !

Hors ligne

#3 03-04-2022 14:36:54

Roro
Membre expert
Inscription : 07-10-2007
Messages : 1 631

Re : Mêmes chiffres

Salut,

J'en trouve plus que demandé... mais je ne suis pas d'accord avec Bernard concernant la permutation circulaire... (sauf si j'ai mal compris la question).

Les solutions ?

108 (si on admet que 081 compte)
216
324
432
540
648
756
864
972

Une fois qu'on voit les solutions (si elles sont justes), ça peut donner une idée de la preuve ?

Roro.

Dernière modification par Roro (03-04-2022 14:37:33)

Hors ligne

#4 03-04-2022 15:30:47

Bernard-maths
Membre
Lieu : 34790 Grabels
Inscription : 18-12-2020
Messages : 1 443

Re : Mêmes chiffres

Salut !

Oui, les mêmes mais j'ai commencé avec 216, ses multiples, et puis les autres !

Finalement les multiples de 108, au début je cherchais les multiples de 36 = 4*9 ...

Il y a permutation circulaire des chiffres : abc donne cab !

108 -> 081 ; 216 -> 162 ; 324 -> 243 ; ... ; 972 -> 729 !

Si on dépasse 1000, avec 1080 -> 810 ; 1188 -> 891 ; 1296 -> 972 ;  alors ?

1080 - > 0108 = (0+1)08 = 108 -> 810 ; 1188 -> 8118 = (8+1)18 = 918 ->891 ... plus complexe mais semble fonctionner en 2 étapes ???

Mais pas vraiment d'idée de preuve ... sauf divisibilité par 12 !?

B-m

Alors, qu'en pensez-vous ???

Dernière modification par Bernard-maths (03-04-2022 16:46:26)


Ma philosophie est immuable : l'immobilisme tue ...
Les Anciens ont trouvé le plus facile ... il nous reste le plus dur !

Hors ligne

#5 03-04-2022 18:07:04

jpp
Membre
Inscription : 31-12-2010
Messages : 1 112

Re : Mêmes chiffres

Salut ,

Un nombre est égal au trois quarts de l'autre . Mais comme la somme de leurs chiffre est la même , on peut donc conclure que parmi les couples recherches , l'un est multiple de 36 , l'autre étant au moins multiple de 9 .

Hors ligne

#6 03-04-2022 18:16:33

Bernard-maths
Membre
Lieu : 34790 Grabels
Inscription : 18-12-2020
Messages : 1 443

Re : Mêmes chiffres

Salut !

Si le nombre "abc" est multipliable par 3/4, c'est qu'il est divisible par 4. Son 1/4 est ensuite multiplié par 3, le résultat est donc multiple de 3. Comme on a les mêmes chiffres, "abc" est donc multiple de 3. Donc ... multiple de 12 ! Mais je ne vois pas plus. Et pourtant j'ai très vite pris des multiples de 36 ! Pourquoi ?

Dernière modification par Bernard-maths (03-04-2022 18:17:02)


Ma philosophie est immuable : l'immobilisme tue ...
Les Anciens ont trouvé le plus facile ... il nous reste le plus dur !

Hors ligne

#7 08-04-2022 21:45:36

Bernard-maths
Membre
Lieu : 34790 Grabels
Inscription : 18-12-2020
Messages : 1 443

Re : Mêmes chiffres

Bonsoir à tous !

Bonsoir à Fred !

Alors Fred, as-tu des explications pour cet énoncé qui semble mis à mal ?

Cordialement, merci.

Bernard-maths


Ma philosophie est immuable : l'immobilisme tue ...
Les Anciens ont trouvé le plus facile ... il nous reste le plus dur !

Hors ligne

#8 15-04-2022 07:48:17

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 427

Re : Mêmes chiffres

Bonjour,

Le sujet a éveillé ma curiosité.

Si l'on considère les deux entiers comportant trois chiffres en écriture décimale

V = <abc> = 100*a + <bc> (avec 0 < a < 10) ,
W = <def> = 100*d + <ef> (avec 0 <= d < 10) ,

et vérifiant de plus 4W = 3V , alors (V) est effectivement divisible par (4) et vérifie la relation:

<bc> = 4*k (avec cette fois 0 < k< 25) .

Les éventuelles solutions résultent de la double énumération (en Basic)

FOR (a, 1, 9, 1)
  FOR (k, 1, 24, 1)

avec pour filtre la présence des mêmes chiffres dans les chaînes de caractères (<abc>, <def>).

Cette condition peut être remplacée par
a) l'identité des sommes des chiffres: S = a + b + c , T = d + e + f , et
b) le fait de retrouver le chiffre des centaines de (W) au niveau du second ou troisième rang de l'autre entier,
soit finalement: (S = T) ET ((d = b) OU (d=c)) .
La stricte équivalence n'est pas établie, mais le second critère est suffisamment restrictif pour permettre une bonne sélection des doublets (V, W).

On retrouve la liste déjà donnée par Roro

  V   = 108   216   324   432   540   648   756   864   972
  W   = 081   162   243   324   405   486   567   648   729
<bcd> = 080   161   242   323   404   484   565   646   727  

On peut remarquer
- que <bc> est multiple de 8 , et
- que (d) correspond systématiquement au chiffre des dizaines (b) du premier entier (V).

Dernière modification par Wiwaxia (16-04-2022 13:24:45)

Hors ligne

#9 15-04-2022 08:10:27

Bernard-maths
Membre
Lieu : 34790 Grabels
Inscription : 18-12-2020
Messages : 1 443

Re : Mêmes chiffres

Bonjour à tous !

Bonjour Wiwaxia ! Je ne comprends pas la dernière ligne ... 080 devrait donner 060, ... 404 -> 303 ... 161 non divisible par 4 ...

J'ai pas le temps de relire en détail, à plus !

Bernard-maths


Ma philosophie est immuable : l'immobilisme tue ...
Les Anciens ont trouvé le plus facile ... il nous reste le plus dur !

Hors ligne

#10 15-04-2022 10:19:57

Tof
Membre
Inscription : 09-04-2022
Messages : 52

Re : Mêmes chiffres

jpp a écrit :

Salut ,

Un nombre est égal au trois quarts de l'autre . Mais comme la somme de leurs chiffre est la même , on peut donc conclure que parmi les couples recherches , l'un est multiple de 36 , l'autre étant au moins multiple de 9 .

Bonjour,

et même forcément multiple de 27 ...

Tof


Il est difficile d'attraper un chat noir dans une pièce sombre, surtout lorsqu'il n'y est pas.

Hors ligne

#11 15-04-2022 10:46:25

jpp
Membre
Inscription : 31-12-2010
Messages : 1 112

Re : Mêmes chiffres

Salut

Tof : entièrement d'accord avec toi puisque la somme de leurs chiffres est multiple de 9 .

Le plus grand des nombres est donc multiple de 108 .

Hors ligne

#12 15-04-2022 14:01:25

Tof
Membre
Inscription : 09-04-2022
Messages : 52

Re : Mêmes chiffres

Bonjour,

Il reste à voir pourquoi ce sont tous les multiples de 108 ( dans la tranche de nombres considérée)

Tof

Dernière modification par Tof (15-04-2022 14:01:42)


Il est difficile d'attraper un chat noir dans une pièce sombre, surtout lorsqu'il n'y est pas.

Hors ligne

#13 16-04-2022 08:08:32

Tof
Membre
Inscription : 09-04-2022
Messages : 52

Re : Mêmes chiffres

Bonjour,

Il est clair par-contre qu'à partir de 108, dont 081 est le permuté circulaire, ensuite le phénomène se perpétue toujours dans le rapport 3/4 naturellement puisque les mêmes additions de chiffres se reproduisent ensuite (il suffit de poser les additions pour comprendre).
La seule question à se poser (arithmétiquement) est donc pourquoi il n'y en a pas d'autre que ces multiples de 108...

Il suffit de vérifier que pour chaque chiffre des centaines fixé, les deux seules autres possibilités pour les dizaines et unités ( car on est modulo 36)  que celle qui marche ne donnent pas un permuté lorsque multiplié par 3/4.
Un seul nombre est donc valable pour chaque centaine fixée, et les seuls sont bien ceux déjà mentionnés ( les multiples de 108).

Tof

Dernière modification par Tof (16-04-2022 09:41:41)


Il est difficile d'attraper un chat noir dans une pièce sombre, surtout lorsqu'il n'y est pas.

Hors ligne

#14 16-04-2022 13:23:17

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 427

Re : Mêmes chiffres

Bonjour,

Les deux entiers recherchés (V, W) admettent pour expressions:

V = <abc> = a(1 + 9)2 + b(1 + 9) + c = a + b + c + 9(2a + b) + 92a
W = <def> = d(1 + 9)2 + e(1 + 9) + f = d + e + f + 9(2d + e) + 92d

d'où l'on tire:

V MOD 9 = S MOD 9 , W MOD 9 = T MOD 9 ;

de la présence des mêmes chiffres, il s'en suit l'égalité de leurs sommes (S = T),

(V - W) MOD 9 = (S - T) MOD 9 = 0

et compte tenu du rapport qui intervient entre eux (3V = 4W) et implique la divisibilité de (V) par 4 (V = 4V' , où V' est un entier);

(V - W) MOD 9 = (4V' - 3V') MOD 9 = V' MOD 9 = 0 .

Il existe donc un entier (m) vérifiant: V' = 9m , V = 36m et W = 27m .

Il ne va pas de soi que l'on puisse pousser plus loin la généralisation, quoiqu'il soit tentant d'essayer: une extension de la recherche aux nombres de 4 chiffres fait apparaître de nouvelles paires d'entiers non multiples de 108 et 81.

Il suffit pour cela de tester les entiers de la forme V = 100K1 + 4K2 ,
(K1) variant de 0 à 99 et (K2) de 0 à 24.
La présence des mêmes chiffres se caractérise par l'égalité des sommes de leurs cubes.

LDqkp7QwyRZ_Table-10000.png

Dernière modification par Wiwaxia (16-04-2022 15:14:32)

Hors ligne

#15 19-04-2022 00:39:57

Wiwaxia
Membre
Lieu : Paris 75013
Inscription : 21-12-2017
Messages : 427

Re : Mêmes chiffres

Bonsoir,

Dans chaque séquence à nombre donné de chiffres (100...999, 1000...9999, 10000...99999 etc) on retrouve les valeurs de la séquence précédente multipliées par 10, ainsi que de nouvelles valeurs

LDsnaigTJFw_S%C3%A9rie-1+2+3.png

Figurent dans les 3 colonnes les valeurs des entiers (V, W) ainsi que celle du rapport m = V/36 = W/27 .

Le nombre de solutions augment rapidement: dans le cas de 6 chiffres, il y en a 394 (non données ici).

Dernière modification par Wiwaxia (19-04-2022 08:28:05)

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
vingt neuf moins huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums