Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 23-11-2018 13:19:02

capesman
Modérateur
Inscription : 15-08-2016
Messages : 152

Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

  Cette discussion porte sur la leçon de capes : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers.

Capesman.

Hors ligne

#2 02-05-2019 12:13:38

noebert
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour à tous,
je ne vois pas vraiment comment faire cette leçon tout en restant dans IN
Pourriez-vous m'aider ?

merci beaucoup

#3 02-05-2019 15:04:27

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 179

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour

  Qu'est ce qui te gêne dans le fait de travailler dans N uniquement ?

F.

En ligne

#4 25-05-2019 10:16:30

Ra.Cal
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

Je prépare également cette leçon (Multiples et diviseurs dans N; nombres premiers) pour le CAPES et j'ai du mal à savoir où m'arrêter.
Je pensais faire le plan suivant:

I- Multiples et diviseurs dans N
   a) Division euclidienne
       (définition et exercices/exemple)
   b) multiples et diviseurs dans N
       (définition, propriétés, PGCD...applications)
   c) critères de divisibilité
       (propriétés... exemples/exercices)

II- Nombres premiers
    (définition d'un nombre premier, deux deux nombres premiers entre eux, décomposition en facteur premiers...)
     Théorème de Bezout? théorème de Gauss?

Du fait de la restriction à N, cette leçon est surtout basée sur les cylces 3 et 4.
Je me demandais donc s'il serait judicieux d'évoquer les théorèmes de Bezout et de Gauss?
De même, il me semble qu'on ne peux pas présenter les congruences dans cette leçon puisque là encore nous serons dans Z.
J'aimerais donc avoir votre avis afin d'avoir une idée plus claire et précise de ce qui doit figurer dans cette leçon.

En vous remerciant d'avance!

#5 25-05-2019 21:51:10

capesman
Modérateur
Inscription : 15-08-2016
Messages : 152

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

Je pense que la notion d'entiers premiers deux à deux, et encore de théorème de Bézout (et ses conséquences) dépassent le cadre de cette leçon. Démontrer le théorème de Bézout, c'est faire l'arithmétique dans Z, pas dans N. Il y a déjà assez de choses à faire comme cela : la décomposition en facteurs premiers est un théorème délicat, on peut l'appliquer au premier paragraphe pour déterminer quand un nombre en divise un autre, il ne faut pas oublier de donner des algorithmes pour déterminer si un nombre est premier, ou pour déterminer tous les nombres premiers inférieurs ou égaux à un nombre donné (crible d'Eratosthène….).

Capesman.

Hors ligne

#6 30-10-2020 22:44:08

Alain Houé
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,
Je ne sais pas si démontrer qu'il existe une infinité de nombres premiers de la forme 4k-1 et 4k+1 peut faire partie de leçons. Il y a aussi : Si p est premier et n un entier non nul on a : n^{p-1} congru à 1 mod p. Il y a d'autres résultats encore...
Alain Houé

#7 31-10-2020 08:50:11

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 179

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

  Si, cela peut faire partie de la leçon, mais dire qu'il y en a une infinité de la forme 4k+1, c'est vraiment difficile non? Le petit théorème de Fermat est aussi intéressant, mais sans doute pas essentiel.

F.

En ligne

#8 13-04-2021 15:31:16

A_maths
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

Préparant actuellement cette leçon, je me demande si le théorème de Gauss peut être introduit où est-il HS ?

Peut-on mettre les congruences en prérecquis ou ne vaut-il mieux pas en parler ?

A.

#9 14-04-2021 15:10:48

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 179

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour

  On peut parler du théorème de Gauss, mais à mon avis ce n'est pas au coeur de la leçon, d'autant que si tu veux le démontrer, tu as besoin du théorème de Bézout et donc de faire de l'arithmétique dans Z et non dans N. Les congruences, surtout pas en prérequis (comment peux-tu définir la notion de congruence sans savoir ce qu'est un diviseur dans N), et à mon avis, ça n'a rien du tout à voir avec la leçon.

F

En ligne

#10 14-04-2021 16:54:00

A_maths
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

Merci de votre réponse !

Je parlais plutôt du lemme d'Euclide que du théorème de Gauss en réalité !

Pour les congruences, en effet, je ne les ai pas mises.

#11 10-07-2021 15:10:31

Banach10
Membre
Inscription : 10-07-2021
Messages : 2

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

Je suis tombé sur cette leçon. J'ai présenté le plan suivant :

I. Multiples et diviseurs dans N
   1. Division euclidienne, définitions multiple et diviseur
   2. Critères de divisibilité (par 2, 3, 4, 9, 11)
   3. Congruence (définie via division euclidienne)
II. Nombres premiers
   1. Définition d'un nombre premier, crible d'Ératosthène
   2. Critère d'arrêt, test de primalité naïf (Python)
   3. Lemme d'Euclide*, infinité des nombres premiers
   4. Théorème fondamental de l'arithmétique, nombre de diviseurs
   5. Petit théorème de Fermat, test de Fermat (Python), nombres pseudo-premiers

* Choisi plutôt que le théorème de Gauss car sa démonstration ne nécessite pas Bézout et qu'il permet de démontrer le théorème fondamental de l'arithmétique et le petit théorème de Fermat.

Il m'a été demandé les démonstrations du petit théorème de Fermat, du critère de divisibilité par 11 et de l'infinité des nombres premiers, et la résolution de deux exercices donnés par le jury. Ce plan n'est sans doute pas idéal mais il tient la route à condition de savoir tout démontrer, résultat : 17/20.

Bonne chance aux futurs candidats !

Dernière modification par Banach10 (10-07-2021 15:25:30)

Hors ligne

#12 11-06-2022 22:37:38

rasa
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

bonjour,
J'ai quelques question concernant l'épreuve de leçon:
1- est ce que les manuels contiennent toutes les leçon?
2- est ce qu'on fait un cours ou en cite juste le plan? puis on détail la partie demandé par le jury?
3- c'est quoi le raccourci de capture d'écran sur les manuels mises à disposition?
4-est ce que libre office (pour les diaporamas : présentation impress) fonctionne bien?
merci d'avance pour vos réponses

#13 03-06-2023 16:34:49

Nw
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour,

J'ai placé dans cette leçon la proposition suivante :
Soient a entier naturel non nul et b, c des entiers naturels. Si a divise b et c, alors a divise kb+lc où k et l sont deux entiers naturels.
Or je voudrais mettre un exercice où j'utilise le fait que pour trois entiers naturels a, b et c, a divise b et a divise c donc a divise b-c où b-c est positif.
Je pense donc rajouter dans ma leçon la proposition suivante : soient a, b et c des entiers naturels (a non nul). Si a divise b et c, alors a divise |b-c| (i.e. valeur absolue de b-c)).
J'aimerai savoir, s'il vous plaît, si cette proposition est correcte? Et la démonstration suivante est elle correcte?
Demo : Par hypothèse, il existe k et l entiers naturels tel que b=ka et c=la. Ainsi |b-c| = |(k-l)a| = a|k-l| car a positif. Donc a divise |b-c| car |k-l| entier naturel.
Enfin, j'aimerai aussi savoir si on a bien la généralisation suivante, svp :
Soient a entier naturel non nul et b, c des entiers naturels. Si a divise b et c, alors a divise |kb+k'c| où k et k' sont deux entiers RELATIFS.

Je vous remercie d'avance pour votre réponse.

#14 03-06-2023 22:59:43

Fred
Administrateur
Inscription : 26-09-2005
Messages : 7 179

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

Bonjour

  oui ce que tu as écrit est correct !

F.

En ligne

#15 04-06-2023 09:38:25

Nw
Invité

Re : Multiples et diviseurs dans $\mathbb N$ - Nombres premiers

D'accord, merci beaucoup !

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt treize moins soixante dix-sept
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums