Forum de mathématiques - Bibm@th.net
Vous n'êtes pas identifié(e).
- Contributions : Récentes | Sans réponse
Pages : 1
#1 17-08-2024 16:58:39
- ArthurPrime
- Membre
- Inscription : 17-02-2024
- Messages : 43
Parité d'applications
Bonjour à vous,
Existe-t-il un lien entre la parité de f et la parité de sa bijection réciproque dès lors qu'elle existe ? Si non, comment montrer que l'application qui a x associe tan(x)-x admet une bijection réciproque impaire ?
(J'avais commencé à essayer de le montrer avec une fonction paire, je commençais avec f(-x)=f(x) et je passais à l'application réciproque mais pas très concluant)
Merci à vous,
Cdt,
Hors ligne
#2 17-08-2024 20:36:13
- bridgslam
- Membre
- Lieu : Rospez
- Inscription : 22-11-2011
- Messages : 1 417
Re : Parité d'applications
Bonsoir,
Si x est envoyé sur y par la bijection f et que -x est envoyé sur -y
( f impaire) Il suffit de lire les choses dans l'autre sens ... puisque vous avez une bijection.
f ne peut pas être paire et bijective, car tout élément non nul aurait au moins deux antécédents...
A.
Dernière modification par bridgslam (17-08-2024 20:38:49)
"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."
Hors ligne
#3 17-08-2024 20:37:12
- Fred
- Administrateur
- Inscription : 26-09-2005
- Messages : 7 174
Re : Parité d'applications
Bonjour
Une application paire n'est pas injective donc ça va être difficile de parler de sa réciproque...
C'est un petit exercice de démontrer que la réciproque d'une fonction impaire bijective est impaire.
F.
Hors ligne
#4 18-08-2024 19:35:25
- Arthur_Response
- Invité
Re : Parité d'applications
Bonjour,
Je me suis trompé sur les fonctions paires mais je voulais savoir comment montrer que la réciproque d’une fonction impaire bijective était impaire. Je pensais réaliser une démonstration grâce à la relation entre la dérivée de la bijection réciproque et l’inverse de f’.
Bonne journée,
#5 18-08-2024 20:07:30
- bridgslam
- Membre
- Lieu : Rospez
- Inscription : 22-11-2011
- Messages : 1 417
Re : Parité d'applications
Bonsoir,
Si vous appelez g la réciproque de f impaire et bijective,
g( -y ) = g( -f(x) ) = g( f(-x) ) = -x= -g(y).
La dérivabilité n'est pas nécessire.
Bonne soirée
Alain
Dernière modification par bridgslam (18-08-2024 20:44:51)
"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."
Hors ligne
#6 19-08-2024 12:12:02
- ArthurPrime
- Membre
- Inscription : 17-02-2024
- Messages : 43
Re : Parité d'applications
Merci beaucoup
Hors ligne
Pages : 1