Supplémentaire - Bibm@th.net
Enoncé
Soient $F, G$ les sous-espaces vectoriels de $\mathbb R^4$ suivants :
$ F=\{ (x,y,z,t)\in \mathbb R^4 \ \vert \ x+y+z=0 \text{ et } 2x+y+z-t=0 \} $,
$ G = \textrm{vect}\{ (1,-2,1,1),(1,2,-3,1),(5,-3,-2,5)\}\subset \mathbb R^4 $.
$ F=\{ (x,y,z,t)\in \mathbb R^4 \ \vert \ x+y+z=0 \text{ et } 2x+y+z-t=0 \} $,
$ G = \textrm{vect}\{ (1,-2,1,1),(1,2,-3,1),(5,-3,-2,5)\}\subset \mathbb R^4 $.
- Calculer la dimension de $F$.
- Montrer que $G\subset F$ et conclure que $G=F$.
- Déterminer un supplémentaire de $F$.