$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Des limites du théorème d'intégration terme à terme - Bibm@th.net

Exercice 1 - Des limites du théorème d'intégration terme à terme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On souhaite dans cet exercice démontrer l'égalité suivante : $$\int_1^{+\infty}\frac1{1+t^3}dt=\sum_{n=0}^{+\infty}\frac{(-1)^n}{3n+2}.$$ Pour cela, on veut partir de l'égalité $$\frac1{1+t^3}=\sum_{n=0}^{+\infty}\frac{(-1)^n}{t^{3n+3}}$$ valide pour $t>1$.
  1. Expliquer pourquoi on ne peut pas appliquer le théorème d'intégration terme à terme.
  2. Pour $n\geq 0$ et $t>1,$ on pose $R_n(t)=\sum_{k=n+1}^{+\infty}\frac{(-1)^n}{t^{3n+3}}.$ Démontrer que $\int_1^{+\infty}R_n(t)dt$ tend vers $0$, et conclure.
Indication
Corrigé