$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

\'Ecriture en base $b$ - Bibm@th.net

Enoncé
Soit $b\geq 2$ un entier. On souhaite démontrer que tout entier $n\geq 1$ s'écrit uniquement $$n=\sum_{k=0}^p a_k b^k$$ avec $p\geq 0$, $a_k\in\{0,\dots,b-1\}$ et $a_p\geq 1$.
  1. Existence : démontrer l'existence en procédant par récurrence forte. Pour l'hérédité, on pourra utiliser la division euclidienne de $n$ par $b$.
  2. Unicité : on suppose que $n$ admet deux décompositions distinctes \[ n=\sum_{k=0}^p a_k b^k\textrm{ et }n=\sum_{k=0}^{p'}a'_k b^k. \] On peut supposer $p\geq p'$. Quitte à compléter la suite $a'_k$ par $a'_{p'+1}=\dots=a'_p=0$, on peut supposer que $p=p'$. Soit $\ell\in\{0,\dots,p\}$ le plus grand possible tel que $a_\ell\neq a'_\ell$.
    1. Vérifier que $(a_\ell-a'_\ell)b^\ell=\sum_{k=0}^{\ell-1}(a'_k-a_k)b^k$.
    2. Démontrer que, pour toute suite finie $c_0,\dots,c_{\ell-1}$ avec $0\leq c_k\leq b-1$, on a \[\sum_{k=0}^{\ell-1}c_k b^k < b^\ell. \]
    3. Conclure.
  3. Donner l'écriture de 37 (écrit en base 10) en base 2, puis en base 3.
Indication
Corrigé