$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

\'Equation fonctionnelle - Bibm@th.net

Exercice 1 - Équation fonctionnelle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f:\mathbb R\to\mathbb R$ continue telle que, $$\forall (x,y)\in\mathbb R^2,\ f(x+y)=f(x)+f(y).$$
  1. Déterminer $f(0)$.
  2. Démontrer que $f$ est impaire.
  3. Démontrer que, pour tout $n\geq 1$ et tout $x\in\mathbb R$, $f(nx)=nf(x)$.
  4. Démontrer que, pour tout $n\in\mathbb Z$ et tout $x\in\mathbb R$, $f(nx)=nf(x)$.
  5. Démontrer que pour tout nombre rationnel $r=\frac{p}q$ et pour tout $x\in\mathbb R$, on a $$f\left(\frac pq x\right)=\frac pqf(x)$$ (on pourra écrire $p=q\times\frac pq$).
  6. Conclure qu'il existe $a\in\mathbb R$ tel que, pour tout $x\in\mathbb R$, $f(x)=ax$.
Corrigé