$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Nombre de dérangements - Bibm@th.net

Exercice 1 - Nombre de dérangements [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour tous les entiers $k$ et $n$ tels que $n\geq 1$ et $0\leq k\leq n$, on note $D_{n,k}$ le nombre de bijections (ou permutations) $s$ de l'ensemble $\{1,\dots,n\}$ ayant $k$ points fixes, c'est-à-dire telles que $$k=\textrm{card}\big\{i\in\{1,\dots,n\};\ s(i)=i\big\}.$$ On pose $D_{0,0}=1$ et $d_n=D_{n,0}$. $d_n$ désigne le nombre de dérangements, c'est-à-dire de permutations sans point fixe.
  1. Dresser la liste de toutes les permutations de $\{1,2,3\}$ et en déduire la valeur de $D_{3,0}$, $D_{3,1}$, $D_{3,2}$ et $D_{3,3}$.
  2. Montrer que $n!=\sum_{k=0}^n D_{n,k}$.
  3. Montrer que $D_{n,k}=\binom{n}{k}D_{n-k,0}$.
  4. Montrer que la série entière $\sum_{n\geq 0}\frac{d_n}{n!}z^n$ a un rayon de convergence supérieur ou égal à 1.
  5. On pose $f(x)=\sum_{n=0}^{+\infty}\frac{d_n}{n!}x^n$. Montrer que $(\exp x)f(x)=\frac{1}{1-x}$ pour $|x|<1$.
  6. En déduire que $d_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}$.
  7. Soit $p_n$ la probabilité pour qu'une permutation prise au hasard soit un dérangement. Quelle est la limite de $p_n$ quand $n$ tend vers $+\infty$?
Indication
Corrigé