Fonction gamma - Bibm@th.net
Enoncé
Pour $x\in\mathbb R$, on définit $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$.
- Quel est le domaine de définition de $\Gamma$?
-
- Pour $k\geq 1$ et $0<A<B<+\infty$, on pose $$g_k(t)=\left\{\begin{array}{ll} t^{A-1}e^{-t}|\ln t|^k&\textrm{ si }0<t<1\\ t^{B-1}e^{-t}|\ln t|^k&\textrm{ si }t\geq 1. \end{array}\right. $$ Démontrer que $g_k$ est intégrable sur $]0,+\infty[$.
- En déduire que $\Gamma$ est $C^\infty$ sur son domaine de définition, et calculer $\Gamma^{(k)}$.
- Montrer que pour tout $x>0$, $\Gamma(x+1)=x\Gamma(x)$. En déduire $\Gamma(n+1)$ pour $n$ un entier et un équivalent de $\Gamma$ en $0$.
- Montrer que $\Gamma$ est convexe.
-
- Justifier que, pour tout $u<-1$, $\ln(1-u)\leq -u$.
- Pour $x>0$, on pose $$f_n(t):=\left\{ \begin{array}{ll} t^{x-1}(1-t/n)^n&\textrm{ si }t\in]0,n[\\ 0&\textrm{ si }t\geq n. \end{array}\right.$$ Démontrer que $\lim_{n\to+\infty}\int_0^{+\infty}f_n(t)dt=\Gamma(x).$
- En déduire que pour $x>0$, on a $$\Gamma(x)=\lim_{n\to+\infty}n^x\int_0^1 u^{x-1}(1-u)^n du.$$
- En utilisant des intégrations par parties successives, conclure que, pour tout $x>0$, on a $$\Gamma(x)=\lim_{n\to+\infty}\frac{n!n^x}{x(x+1)\dots(x+n)}.$$