$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Fonction gamma - Bibm@th.net

Enoncé
Pour $x\in\mathbb R$, on définit $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$.
  1. Quel est le domaine de définition de $\Gamma$?
    1. Pour $k\geq 1$ et $0<A<B<+\infty$, on pose $$g_k(t)=\left\{\begin{array}{ll} t^{A-1}e^{-t}|\ln t|^k&\textrm{ si }0<t<1\\ t^{B-1}e^{-t}|\ln t|^k&\textrm{ si }t\geq 1. \end{array}\right. $$ Démontrer que $g_k$ est intégrable sur $]0,+\infty[$.
    2. En déduire que $\Gamma$ est $C^\infty$ sur son domaine de définition, et calculer $\Gamma^{(k)}$.
  2. Montrer que pour tout $x>0$, $\Gamma(x+1)=x\Gamma(x)$. En déduire $\Gamma(n+1)$ pour $n$ un entier et un équivalent de $\Gamma$ en $0$.
  3. Montrer que $\Gamma$ est convexe.
    1. Justifier que, pour tout $u<-1$, $\ln(1-u)\leq -u$.
    2. Pour $x>0$, on pose $$f_n(t):=\left\{ \begin{array}{ll} t^{x-1}(1-t/n)^n&\textrm{ si }t\in]0,n[\\ 0&\textrm{ si }t\geq n. \end{array}\right.$$ Démontrer que $\lim_{n\to+\infty}\int_0^{+\infty}f_n(t)dt=\Gamma(x).$
  4. En déduire que pour $x>0$, on a $$\Gamma(x)=\lim_{n\to+\infty}n^x\int_0^1 u^{x-1}(1-u)^n du.$$
  5. En utilisant des intégrations par parties successives, conclure que, pour tout $x>0$, on a $$\Gamma(x)=\lim_{n\to+\infty}\frac{n!n^x}{x(x+1)\dots(x+n)}.$$
Indication
Corrigé