Sans le théorème d'intégration terme à terme - Bibm@th.net
Exercice 1 - Sans le théorème d'intégration terme à terme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $a$ et $b$ deux réels strictement positifs.
- Pour $t\in ]0,1[$, écrire $\frac{t^{a-1}}{1+t^b}$ comme somme d'une série $\sum_{n\geq 0}u_n(t)$.
- Déterminer la nature de la série $\sum_{n\geq 0}\int_0^1 |u_n(t)|dt$. Que peut-on en déduire?
- On pose $S_N(t)=\sum_{n=0}^N u_n(t)$. Démontrer que $$\int_0^1 \frac{t^{a-1}}{1+t^b}dt=\lim_{N\to+\infty}\int_0^1 S_N(t)dt.$$
- En déduire que $$\sum_{n=0}^{+\infty}\frac{(-1)^n}{a+nb}=\int_0^1 \frac{t^{a-1}}{1+t^b}dt$$ puis la valeur de $\sum_{n\geq 0}\frac{(-1)^n}{3n+1}$.