En détails - Bibm@th.net
Enoncé
Soit $f(x,y)=y^2-x^2y+x^2$ et $D=\{(x,y)\in\mathbb R^2;\ x^2-1\leq y\leq 1-x^2\}$.
- Représenter $D$ et trouver une paramétrisation de $\Gamma$, le bord de $D$.
- Justifier que $f$ admet un maximum et un minimum sur $D$.
- Déterminer les points critiques de $f$.
- Déterminer le minimum et le maximum de $f$ sur $\Gamma$.
- En déduire le minimum et le maximum de $f$ sur $D$.