$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Ordre du produit de deux éléments - Bibm@th.net

Exercice 1 - Ordre du produit de deux éléments [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $G$ un groupe abélien, $x$ et $y$ deux éléments de $G$ d'ordres respectifs $p$ et $q$.
  1. On suppose que $p$ et $q$ sont premiers entre eux. Démontrer que $xy$ est d'ordre $pq$.
  2. Importance des hypothèses - 1 : Si $H=GL_2(\mathbb R)$, $A=\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)$ et $B=\left(\begin{array}{cc}0&1\\-1&-1\end{array}\right)$, vérifier que $A$ et $B$ sont d'ordre fini, mais que $AB$ n'est pas d'ordre fini.
  3. Importance des hypothèses - 2 : Si $p$ et $q$ ne sont pas supposés premiers entre eux, démontrer que le produit $xy$ n'est pas nécessairement d'ordre $pq$, ou d'ordre $\textrm{ppcm}(p,q)$.
  4. Une application :
    1. Soit $d$ un diviseur de $p$. Démontrer qu'il existe un élément d'ordre $d$ dans $G$.
    2. En déduire que $G$ admet des éléments d'ordre $\textrm{ppcm}(p,q)$.
    3. On suppose de plus que $G$ est fini. Démontrer que $G$ admet un élément dont l'ordre est le ppcm de l'ordre des éléments de $G$.
Indication
Corrigé