$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}}
\newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}}
\newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)}
\newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n}
\newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}}
\newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)}
\newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th}
\DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card}
\DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im}
\DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr}
\DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp}
\newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}}
\newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle}
\newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]}
\newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle}
$$
Bibm@th Formulaire - Fonctions puissances
- Définition : pour $\alpha\in\mathbb R$, $x^\alpha=\exp(\alpha \ln x)$;
- Domaine de définition : $\mathbb R_+^*$, sauf si $\alpha$ est un entier naturel. Dans ce cas, le domaine de définition est $\mathbb R$.
- Dérivée : $\alpha x^{\alpha-1}$;
- Sens de variation : croissante si $\alpha>1$, décroissante si $\alpha<1$, constante si $\alpha=0$.
- Limites aux bornes :
- si $\alpha>0$, alors $\lim_{x\to 0}x^\alpha=0$ et $\lim_{x\to+\infty}x^\alpha=+\infty$;
- si $\alpha<0$, alors $\lim_{x\to 0}x^\alpha=+\infty$ et $\lim_{x\to+\infty}x^\alpha=0$;
- Propriétés algébriques : pour tous $\alpha,\beta\in\mathbb R$, pour tout $x>0$, on a
$$(xy)^\alpha=x^\alpha y^\alpha,\ x^{\alpha+\beta}=x^\alpha x^\beta,\ (x^\alpha)^\beta=x^{\alpha\beta}.$$
- Courbe représentative :