Différentiabilité à paramètres - Bibm@th.net
Enoncé
- Démontrer que, pour tous $(x,y)$ réels, $|xy|\leq x^2-xy+y^2$.
- Soit $f$ la fonction de $\mtr^2$ dans $\mtr$ définie par $f(0,0)=0$ et $f(x,y)=(x^py^q)/(x^2-xy+y^2)$ si $(x,y)\neq (0,0)$, où $p$ et $q$ sont des entiers naturels non nuls. Pour quelles valeurs de $p$ et $q$ cette fonction est-elle continue?
- Montrer que si $p+q=2$, alors $f$ n'est pas différentiable.
- On suppose que $p+q=3$, et que $f$ est différentiable en $(0,0)$. Justifier qu'alors il existe deux constantes $a$ et $b$ telles que $f(x,y)=ax+by+o(\|(x,y)\|)$. En étudiant les applications partielles $x\mapsto f(x,0)$ et $y\mapsto f(0,y)$, justifier que $a=b=0$. Conclure, à l'aide de $x\mapsto f(x,x)$, que $f$ n'est pas différentiable en $(0,0)$.