$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Maths sup : Calcul algébrique

Manipulation des symboles sommes et produits
Exercice 1 - Écrire à l'aide du symbole somme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Écrire à l'aide du symbole somme les sommes suivantes :
  1. $2^3+2^4+\cdots+2^{12}$.
  2. $\frac 12+\frac24+\frac{3}8+\cdots+\frac{10}{1024}$.
  3. $2-4+6-8+\cdots+50$.
  4. $1-\frac 12+\frac13-\frac 14+\cdots+\frac1{2n-1}-\frac{1}{2n}$.
Corrigé
Exercice 2 - Différence de deux sommes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour $n\geq 1$, on pose $u_n=\sum_{k=n}^{2n}\frac 1k$. Simplifier $u_{n+1}-u_n$ puis étudier la monotonie de $(u_n)$.
Indication
Corrigé
Enoncé
Soit $n\geq 1$. Démontrer que $$\sum_{k=n+1}^{2n-1}\ln\left(\sin\left(\frac{k\pi}{2n}\right)\right)=\sum_{k=1}^{n-1} \ln\left(\sin\left(\frac{k\pi}{2n}\right)\right).$$
Indication
Corrigé
Exercice 4 - Changement d'indice magique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer la somme $\sum_{k=1}^n \left(\frac 1k-\frac1{n+1-k}\right)$.
Indication
Corrigé
Enoncé
Simplifier les sommes et produits suivants : $$\begin{array}{lcl} \mathbf 1.\ \sum_{k=1}^n \ln\left(1+\frac 1k\right)&\quad\quad&\mathbf 2.\ \prod_{k=2}^n \left(1-\frac1{k^2}\right)\\ \mathbf 3.\ \sum_{k=0}^n \frac{1}{(k+2)(k+3)}. \end{array}$$
Indication
Corrigé
Enoncé
Déterminer deux réels $a$ et $b$ tels que, pour tout $k\in\mathbb N$, $$\frac 1{(k+1)(k+3)}=\frac a{k+1}+\frac b{k+3}.$$ En déduire la valeur de la somme $$S_n=\sum_{k=0}^n \frac{1}{(k+1)(k+3)}.$$
Indication
Corrigé
Exercice 7 - Somme télescopique et factorielle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
En utilisant une somme télescopique, calculer $\sum_{k=1}^n k\cdot k!$.
Indication
Corrigé
Exercice 8 - Transformer en somme télescopique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Déterminer une suite $(u_k)$ telle que, pour tout $k\geq 0$, on ait $$u_{k+1}-u_k=(k+2) 2^k.$$
  2. En déduire $\sum_{k=0}^{n}(k+2)2^k.$
Indication
Corrigé
Enoncé
Démontrer que, pour tout $n\in\mathbb N^*$, on a $$(n+1)!\geq\sum_{k=1}^n k!\quad.$$
Indication
Corrigé
Exercice 10 - Somme et somme des carrés [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $n\geq 1$ et $x_1,\dots,x_n$ des réels vérifiant $$\sum_{k=1}^n x_k=n\textrm{ et }\sum_{k=1}^n x_k^2=n.$$ Démontrer que, pour tout $k$ dans $\{1,\dots,n\}$, $x_k=1$.
Indication
Corrigé
Calcul de sommes et de produits
Exercice 11 - Somme des entiers, des carrés,... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour $n\in\mathbb N$, on note $$a_n=\sum_{k=1}^n k,\ b_n=\sum_{k=1}^n k^2\textrm{ et }c_n=\sum_{k=1}^n k^3.$$ Démontrer que $\displaystyle a_n=\frac{n(n+1)}2$, que $\displaystyle b_n=\frac{n(n+1)(2n+1)}6$ et que $c_n=a_n^2$.
Indication
Corrigé
Exercice 12 - Calculs de sommes arithmétiques [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer les somme suivantes :
  1. $A_n=\sum_{k=1}^n 3$.
  2. $B_n=\sum_{k=1}^n A_k$.
  3. $S_n=\sum_{k=0}^{n}(2k+1)$.
Indication
Corrigé
Exercice 13 - Calculs de sommes géométriques [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer les sommes suivantes :
  1. $S=\frac{1}{2^{10}}+\frac{1}{2^{20}}+\frac{1}{2^{30}}+\cdots+\frac{1}{2^{1000}}$.
  2. $T_n=\sum_{k=0}^n \frac{2^{k-1}}{3^{k+1}}$.
Indication
Corrigé
Exercice 14 - Calcul de sommes par changements d'indice [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer la somme suivante : $$\sum_{k=1}^n (n-k+1).$$
Indication
Corrigé
Exercice 15 - Calcul de sommes avec indices négatifs [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer la somme suivante : $$\sum_{k=-5}^{15} k(10-k).$$
Indication
Corrigé
Exercice 16 - Se ramener à une somme classique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour $n\geq 1$, on pose $u_n=\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n}{n^2}$. Calculer explicitement $u_n$, puis en déduire la limite de la suite $(u_n)$.
Indication
Corrigé
Enoncé
Pour $n\in\mathbb N^*$ et $x\in\mathbb R$, on note $$P_n(x)=\prod_{k=1}^n \left(1+\frac xk\right).$$
  1. Que valent $P_n(0)$, $P_n(1)$, $P_n(-n)$?
  2. Démontrer que pour tout réel non-nul $x$, on a $$P_n(x)=\frac {x+n}xP_n(x-1).$$
  3. Pour $p\in\mathbb N^*$, écrire $P_n(p)$ comme coefficient du binôme.
Indication
Corrigé
Exercice 18 - Somme géométrique dans tous ses états [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit pour $n\in\mathbb N$, $u_n=(-2)^n$. Calculer les sommes suivantes : $$\sum_{k=0}^{2n} u_{k};\quad \sum_{k=0}^{2n+1} u_{k};\quad \sum_{k=0}^{n} u_{2k};\quad \sum_{k=0}^{2n} (u_{k}+n);\quad \left(\sum_{k=0}^{2n} u_{k}\right)+n;\quad \sum_{k=0}^{n} u_{k+n};\quad \sum_{k=0}^{n} u_{kn}.$$
Indication
Corrigé
Enoncé
  1. Simplifier la somme $\sum_{k=1}^{2n}(-1)^k k$ en faisant des sommations par paquets.
  2. Montrer par récurrence que pour tout $n\in\mtn^*$, on a $$S_n=\sum_{k=1}^n (-1)^k k=\frac{(-1)^n (2n+1)-1}{4}.$$ Retrouver le résultat précédent.
Indication
Corrigé
Enoncé
Soit $x\in\mathbb R$ et $n\in\mathbb N^*$.
  1. Calculer $S_n(x)=\sum_{k=0}^n x^k.$
  2. En déduire la valeur de $T_n(x)=\sum_{k=0}^n k x^k.$
Indication
Corrigé
Enoncé
Soient $(a_n)_{n\in\mathbb N}$ et $(B_n)_{n\in\mathbb N}$ deux suites de nombres complexes. On définit deux suites $(A_n)_{n\in\mathbb N}$ et $(b_n)_{n\in\mathbb N}$ en posant : $$A_n=\sum_{k=0}^n a_k,\quad\quad b_n=B_{n+1}-B_n.$$
  1. Démontrer que $\sum_{k=0}^n a_kB_k=A_n B_n-\sum_{k=0}^{n-1}A_kb_k.$
  2. En déduire la valeur de $\sum_{k=0}^n 2^kk$.
Indication
Corrigé
Sommes doubles
Exercice 22 - Comment permuter une somme double? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(a_{i,j})_{(i,j)\in\mathbb N^2}$ une suite double de nombres réels. Soit $n$ et $m$ deux entiers naturels. Intervertir les sommes doubles suivantes :
  1. $S_1=\sum_{i=0}^n \sum_{j=i}^n a_{i,j}$;
  2. $S_2=\sum_{i=0}^n \sum_{j=0}^{n-i}a_{i,j}$;
  3. $S_3=\sum_{i=0}^n \sum_{j=i}^m a_{i,j}$ où on a supposé $n\leq m$.
Indication
Corrigé
Exercice 23 - Quelques sommes doubles [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer les sommes doubles suivantes :
  1. $\sum_{1\leq i,j\leq n}ij$.
  2. $\sum_{1\leq i\leq j\leq n}\frac ij$.
Indication
Corrigé
Exercice 24 - Application des sommes doubles [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
En écrivant que $$\sum_{k=1}^n k2^k=\sum_{k=1}^n \sum_{j=1}^k 2^k,$$ calculer $\sum_{k=1}^n k2^k$.
Indication
Corrigé
Enoncé
Pour $n\in\mathbb N$, on note $$a_n=\sum_{k=1}^n k,\ b_n=\sum_{k=1}^n k^2\textrm{ et }c_n=\sum_{k=1}^n k^3.$$ Pour cet exercice, on admettra que $\displaystyle a_n=\frac{n(n+1)}2$, que $\displaystyle b_n=\frac{n(n+1)(2n+1)}6$ et que $c_n=a_n^2$.
  1. Calculer $\displaystyle \sum_{1\leq i\leq j\leq n} ij$.
  2. Calculer $\displaystyle \sum_{i=1}^n\sum_{j=1}^n \min(i,j)$.
Indication
Corrigé
Coefficients binômiaux - formule du binôme
Exercice 26 - Factorielle et coefficients binomiaux [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Soient $n,p\geq 1$. Démontrer que $$\binom{n-1}{p-1}=\frac pn \binom np.$$
  2. Pour $n\in\mathbb N$ et $a,,b$ réels non nuls, simplifier les expressions suivantes : $$\mathbf 1.\ (n+1)!-n!\ \quad\mathbf 2.\ \frac{(n+3)!}{(n+1)!}\ \quad\mathbf 3.\ \frac{n+2}{(n+1)!}-\frac 1{n!}\ \quad\mathbf 4.\ \frac{u_{n+1}}{u_n}\textrm{ où }u_n=\frac{a^n}{n!b^{2n}}.$$
Indication
Corrigé
Exercice 27 - Égalité de coefficients binômiaux [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $n\in\mathbb N$.
  1. Pour quels entiers $p\in\{0,\dots,n-1\}$ a-t-on $\binom np<\binom n{p+1}$.
  2. Soit $p\in\{0,\dots,n\}$. Pour quelle(s) valeur(s) de $q\in\{0,\dots,n\}$ a-t-on $\binom np=\binom nq$?
Indication
Corrigé
Enoncé
  1. Développer $(x+1)^6$, $(x-1)^6$.
  2. Démontrer que, pour tout entier $n$, on a $\sum_{p=0}^n \binom np=2^n.$
  3. Démontrer que, pour tout entier $n$, on a $\sum_{p=0}^n \binom np 2^p=3^n$.
  4. Démontrer que, pour tout entier $n$, on a $\sum_{k=1}^{2n}\binom{2n}k (-1)^k 2^{k-1}=0.$
Indication
Corrigé
Exercice 29 - Autour de la formule du binôme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Quel est le coefficient de $a^2b^4c$ dans le développement de $(a+b+c)^7$?
  2. Calculer la somme $$\binom{n}0+\frac12\binom{n}1+\dots+\frac{1}{n+1}\binom{n}{n}.$$
  3. Soient $p,q,m$ des entiers naturels, avec $q\leq p\leq m$. En développant de deux façons différentes $(1+x)^m$, démontrer que $$\binom{m}{p}=\binom{m-q}p+\binom{q}1\binom{m-q}{p-1}+\dots+\binom{q}k\binom{m-q}{p-k}+\dots+\binom{m-q}{p-q}.$$
Indication
Corrigé
Enoncé
Soient $n,p$ des entiers naturels avec $n\geq p$. Démontrer que $$\sum_{k=p}^n \dbinom{k}{p}=\dbinom{n+1}{p+1}.$$
Indication
Corrigé
Enoncé
Quel est le coefficient de $x^ay^bz^c$ dans le développement de l'expression $(x+y+z)^n$?
Indication
Corrigé
Enoncé
Calculer les sommes suivantes : $${S}_{n}=\sum^{n}_{k=0} (-1)^k\binom{n}{k}^{2}\textrm{ et } {T}_{n}=\sum^{n}_{k=0}k\binom{n}{k}^{2}.$$
Indication
Corrigé
Exercice 33 - Une somme à partir de la formule du binôme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
L'objectif de l'exercice est de démontrer la (surprenante!) formule suivante : $$\sum_{k=1}^n \binom nk\frac{(-1)^{k+1}}k=\sum_{k=1}^n\frac 1k.$$
  1. Soit $x$ un réel non nul. Démontrer que $$\frac{1-(1-x)^n}{x}=\sum_{p=0}^{n-1}(1-x)^p.$$
  2. On pose pour $x\in\mathbb R$, $$f(x)=\sum_{k=1}^n \binom nk \frac{(-1)^k}k x^k.$$ Démontrer que, pour $x\in\mathbb R$, on a $$f'(x)=-\sum_{p=0}^{n-1}(1-x)^p.$$
  3. Conclure.
Indication
Corrigé
Exercice 34 - Équation de Pell-Fermat [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Le but de l'exercice est de démontrer que l'équation $x^2-2y^2=1$ admet une infinité de solutions avec $x,y$ des entiers naturels.
  1. Soit $n\geq 1$. Démontrer qu'il existe deux entiers $x_n$ et $y_n$ tels que $(3+2\sqrt 2)^n =x_n+\sqrt 2 y_n.$
  2. Exprimer $x_{n+1}$ et $y_{n+1}$ en fonction de $x_{n}$ et $y_{n}$.
  3. En déduire que les suites $(x_n)$ et $(y_n)$ sont strictement croissantes.
  4. Démontrer le résultat annoncé.
Indication
Corrigé