$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Préparer sa kholle : espaces vectoriels

L'exercice qu'il faut savoir faire
Enoncé
Soit $E=\mathcal F(\mathbb R,\mathbb R)$ l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. Étudier l'indépendance linéaire des familles suivantes :
  1. $(\sin x,\cos x)$;
  2. $(\sin 2x,\sin x,\cos x)$;
  3. $(\cos 2x,\sin^2 x,\cos^2 x)$;
  4. $(x,e^x,\sin(x))$.
Indication
Corrigé
L'exercice standard
Exercice 2 - Sous-espaces de fonctions supplémentaires [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $F=\left\{f\in\mathcal{F}(\mathbb R,\mathbb R):\ f(0)=f(1)=0\right\}$ et $G=\left\{x\mapsto ax+b:\ a,b\in\mathbb R\right\}$.
  1. Démontrer que $F$ et $G$ sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb R,\mathbb R)$.
  2. Démontrer que $F$ et $G$ sont en somme directe.
  3. Soit $h\in\mathcal{F}(\mathbb R,\mathbb R)$. Déterminer $a,b\in\mathbb R$ tels que la fonction $f$ définie pour tout $x\in\mathbb R$ par $f(x)=h(x)-(ax+b)$ vérifie $f\in F$.
  4. En déduire que $F$ et $G$ sont supplémentaires dans $\mathcal{F}(\mathbb R,\mathbb R)$.
Indication
Corrigé
L'exercice pour les héros
Enoncé
Soit $(v_1,\dots,v_n)$ une famille libre d'un $\mathbb R$-espace vectoriel $E$. Pour $k=1,\dots,n-1$, on pose $w_k=v_k+v_{k+1}$ et $w_n=v_n+v_1$. Etudier l'indépendance linéaire de la famille $(w_1,\dots,w_n)$.
Indication
Corrigé