$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Préparer sa kholle : Calcul algebrique

L'exercice qu'il faut savoir faire
Exercice 1 - Calcul de sommes par découpage [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $n\in\mathbb N$.
  1. Calculer $A_n=\sum_{k=2n+1}^{3n}(2n)$.
  2. Calculer $B_n=\sum_{k=n}^{2n}k$.
  3. En déduire la valeur de $S_n=\sum_{k=n}^{3n}\min(k,2n)$.
Indication
Corrigé
L'exercice standard
Enoncé
Pour $n\geq 1$, on pose $S_n=\sum_{k=1}^n \frac 1k$ et $u_n=\sum_{k=1}^n S_k$. Démontrer que, pour tout $n\geq 1$, $u_n=(n+1)S_n-n$.
Indication
Corrigé
L'exercice pour les héros
Exercice 3 - Somme binomiale télescopique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Soient $m,k$ deux entiers naturels. Justifier que $$\binom{m+k}{m}=\binom{m+k+1}{m+1}-\binom{m+k}{m+1}.$$
  2. En déduire, pour tous entiers naturels $m,n\in\mathbb N^*$, la valeur de $$S=\sum_{k=0}^n \binom{m+k}{m}.$$
  3. En déduire celle de $$P=\sum_{k=0}^n \left(\prod_{p=1}^m(k+p)\right).$$
Indication
Corrigé