Méthodes : équations différentielles
Résolution d'une équation différentielle linéaire d'ordre 1
Si on veut résoudre une équation différentielle linéaire d'ordre $1,$ $y'(x)+a(x)y(x)=b(x)$, alors
- on commence par chercher les solutions de l'équation homogène $y'(x)+a(x)y(x)=0$. Soit $A$ une primitive de la fonction $a$. Les solutions de l'équation homogène sont les fonctions $x\mapsto \lambda e^{-A(x)}$, $\lambda$ une constante réelle ou complexe. En particulier, si $a$ est une fonction constante, les solutions de l'équation homogène sont les fonctions $x\mapsto \lambda e^{-ax}$.
- on cherche alors une solution particulière de l'équation $y'(x)+a(x)y(x)=b(x)$,
- soit en cherchant une solution évidente (voir cet exercice);
- soit, si $a$ est une constante, en cherchant une solution du même type que $b$ (un polynôme si $b$ est un polynôme,...) (voir cet exercice);
- soit en utilisant la méthode de variation de la constante : on cherche une solution sous la forme $y(x)=\lambda(x)y_0(x)$, où
$y_0$ est une solution de l'équation homogène. On a alors
$$y'(x)=\lambda'(x)y_0(x)+\lambda(x)y_0'(x)$$
et donc $$y'(x)+a(x)y(x)=\lambda(x)(y_0'(x)+a(x)y_0(x))+\lambda'(x)y_0(x).$$
Tenant compte de $y_0'+ay_0=0$, $y$ est solution de l'équation $y'+ay=b$ si et seulement si
$$\lambda'(x)y_0(x)=b(x).$$
On doit alors trouver une primitive de $b(x)/y_0(x)$ pour trouver une solution particulière (voir cet exercice).
- si le second membre s'écrit sous la forme $b(x)=b_1(x)+b_2(x)$, on peut aussi utiliser le principe de superposition des solutions : on cherche une solution $y_1$ à l'équation $y'(x)+a(x)y(x)=b_1(x)$ et une solution $y_2$ à l'équation $y'(x)+a(x)y(x)=b_2(x)$. Alors $y_1+y_2$ est une solution à $y'(x)+a(x)y(x)=b(x)$ (voir cet exercice).
- les solutions de l'équation $y'+ay=b$ s'écrivent comme la somme de cette solution particulière et des solutions de l'équation homogène.
Résolution d'une équation différentielle linéaire d'ordre 2 à coefficients constants
Si on doit résoudre une équation différentielle linéaire d'ordre 2 à coefficients constants, $y''(x)+ay'(x)+by(x)=f(x)$, alors on commence par rechercher les solutions de l'équation homogène : $y''+ay'+by=0$. Pour cela, on introduit l'équation caractéristique $$r^2+ar+b=0.$$ La résolution de l'équation homogène dépend alors de si l'on se place sur $\mathbb R$ ou sur $\mathbb C$ :
- Résolution de l'équation homogène, cas complexe :
- si l'équation caractéristique admet deux racines $r_1$ et $r_2$, alors les solutions de l'équation homogène $y''+ay'+by=0$ sont les fonctions $$x\mapsto \lambda e^{r_1 x}+\mu e^{r_2 x}\quad\textrm{ avec }\lambda,\mu\in\mathbb C.$$
- si l'équation caractéristique admet une racine double $r$, alors les solutions de l'équation homogène $y''+ay'+by=0$ sont les fonctions $$x\mapsto (\lambda x+\mu)e^{rx}\quad\textrm{ avec }\lambda,\mu\in\mathbb C.$$
- Résolution de l'équation homogène, cas réel :
- si l'équation caractéristique admet deux racines réelles $r_1$ et $r_2$, alors les solutions de l'équation homogène $y''+ay'+by=0$ sont les fonctions $$x\mapsto \lambda e^{r_1 x}+\mu e^{r_2 x}\quad\textrm{ avec }\lambda,\mu\in\mathbb R.$$
- si l'équation caractéristique admet une racine double $r$, alors les solutions de l'équation homogène $y''+ay'+by=0$ sont les fonctions $$x\mapsto (\lambda x+\mu)e^{rx}\quad\textrm{ avec }\lambda,\mu\in\mathbb R.$$
- si l'équation caractéristique admet deux racines complexes conjuguées, $\alpha\pm i\beta$, alors les solutions de l'équation homogène sont les fonctions $$x\mapsto \lambda e^{\alpha x}\cos(\beta x)+\mu e^{\alpha x}\sin(\beta x).$$
On cherche ensuite une solution particulière :
- si $f$ est un polynôme, on cherche une solution particulière sous la forme d'un polynôme (voir cet exercice).
- si $f(x)=A\exp(\lambda x)$, on cherche une solution particulière sous la forme
- $B\exp(\lambda x)$ si $\lambda$ n'est pas racine de l'équation caractéristique;
- $Bx\exp(\lambda x)$ si $\lambda$ est racine simple de l'équation caractéristique;
- $Bx^2\exp(\lambda x)$ si $\lambda$ est racine double de l'équation caractéristique.
- si $f(x)=B\cos(\omega x)$, on cherche une solution sous la forme $y(x)=a\cos(\omega x)+b\sin(\omega x)$ sauf si l'équation homogène est $y''+\omega^2 y=0$. Dans ce cas, on cherche une solution sous la forme $y(x)=ax\sin(\omega x)$.
- si $f(x)=B\sin(\omega x)$, on cherche une solution sous la forme $y(x)=a\cos(\omega x)+b\sin(\omega x)$ sauf si l'équation homogène est $y''+\omega^2 y=0$. Dans ce cas, on cherche une solution sous la forme $y(x)=ax\cos(\omega x)$.
- remarquons que le cas où le second membre est de la forme $\cos(\omega x)$ ou $\sin(\omega x)$ peut aussi être traitée en utilisant $\cos(\omega x)=\Re e(e^{i\omega x})$, en procédant comme décrit ci-dessous pour $e^{\lambda x}$ avec $\lambda=i\omega$, et en prenant la partie réelle de la solution particulière trouvée. Cette méthode fonctionne aussi si le second membre est de la forme $e^{ax} \cos(bx)$ (voir cet exercice).
- Plus généralement, si $f(x)=P(x)\exp(\lambda x)$, avec $P$ un polynôme, on cherche une solution sous la forme $Q(x)\exp(\lambda x)$ (voir cet exercice).
Enfin, les solutions de l'équation $y''+ay'+by=f$ s'écrivent comme la somme de cette solution particulière et des solutions de l'équation homogène.