$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthodes : variables aléatoires discrètes

Déterminer la loi d'une variable aléatoire

Pour déterminer la loi d'une variable aléatoire, on peut

  • Reconnaitre un schéma classique menant à la loi binomiale ou à la loi géométrique (voir cet exercice)
  • Effectuer un calcul de probabilités en utilisant les outils classiques (probabilités conditionnelles, formule des probabilités totales, des probabilités composées...) (voir cet exercice).
Calculer l'espérance, la variance d'une variable aléatoire

Pour calculer l'espérance ou la variance d'une variable aléatoire, on peut

  • utiliser les résultats du cours pour les lois usuelles (voir cet exercice)
  • appliquer la définition de l'espérance lorsqu'on connaît la loi de la variable aléatoire. On sera alors souvent amené à utiliser les résultats sur les sommes classiques, par exemple la somme d'une série géométrique $\sum_{n\geq 0}x^n=\frac 1{1-x}$ ou ses dérivées, le développement en série entière de la fonction exponentielle... (voir cet exercice)
  • utiliser la formule de transfert si la variable aléatoire est définie comme $f(X),$ où $X$ est une variable aléatoire dont la loi est connue (voir cet exercice)
  • calculer la fonction génératrice de la variable aléatoire et utiliser le lien entre la fonction génératrice et les divers moments (voir cet exercice).
Déterminer la loi d'une somme de deux variables aléatoires

Pour déterminer la loi d'une somme $Z=X+Y$ de deux variables aléatoires indépendantes à valeurs dans $\mathbb N$, on peut

  • écrire que $Z=n$ si et seulement si il existe $k\in \mathbb N$ tel que $X=k$ et $Y=n-k$ et utiliser l'indépendance de $X$ et de $Y$ pour calculer $P(X=k,Y=n-k)$ (voir cet exercice).
  • utiliser les fonctions génératrices et le fait que $G_{X+Y}=G_X\times G_Y$ (voir cet exercice).
Déterminer la loi du minimum de deux variables aléatoires

Si $X$ et $Y$ sont deux variables aléatoires indépendantes définies sur le même espace probabilisé, à valeurs dans $\mathbb N,$ et si $Z=\min(X,Y)$, pour déterminer la loi de $Z$ on peut utiliser la méthode suivante :

  • Observer que, pour tout $n\in\mathbb N,$ $Z>n$ si et seulement si $X>n$ et $Y>n.$ Par indépendance de $X$ et de $Y$, ceci entraîne que $$P(Z>n)=P(X>n)P(Y>n).$$
  • Calculer $P(Z>n)$ à partir de la formule précédente.
  • Remarquer que l'événement $Z>n-1$ est réunion disjointe de $Z>n$ et de $Z=n$ pour en déduire $$P(Z=n)=P(Z>n-1)-P(Z>n)$$

(voir cet exercice).

Déterminer la loi du maximum de deux variables aléatoires

Si $X$ et $Y$ sont deux variables aléatoires indépendantes définies sur le même espace probabilisé, à valeurs dans $\mathbb N,$ et si $Z=\max(X,Y)$, pour déterminer la loi de $Z$ on peut utiliser la méthode suivante :

  • Observer que, pour tout $n\in\mathbb N,$ $Z>n$ si et seulement si $X>n$ ou $Y>n.$ Par indépendance de $X$ et de $Y$, et par la formule $P(A\cup B)=P(A)+P(B)-P(A\cap B),$ ceci entraîne que $$P(Z>n)=P(X>n)+P(Y>n)-P(X>n)P(Y>n).$$
  • Calculer $P(Z>n)$ à partir de la formule précédente.
  • Remarquer que l'événement $Z>n-1$ est réunion disjointe de $Z>n$ et de $Z=n$ pour en déduire $$P(Z=n)=P(Z>n-1)-P(Z>n)$$

(voir cet exercice).

Majorer la probabilité qu'une variable aléatoire soit dans un certain intervalle

Pour majorer la probabilité qu'une variable aléatoire soit dans un certain intervalle, on utilise très souvent les inégalités de Markov ou de Bienaymé-Tchebychev (voir cet exercice ou cet exercice).

Retrouver une loi marginale connaissant une loi conjointe

Pour retrouver la loi de $X$ connaissant la loi du couple $(X,Y)$, on écrit simplement que $$P(X=x)=\sum_{k=1}^{+\infty}P\big( (X,Y)=(x,y_k)\big)$$ où $(y_k)_{k\geq 1}$ est l'ensemble des valeurs prises par $Y$ (voir cet exercice).

Déterminer une loi conjointe

Pour déterminer la loi conjointe de $(X,Y)$, un cas facile est celui où la loi de $X$ est connue, et où on connait la loi conditionnelle de $Y$ sachant $X$. On écrit alors simplement $$P(X=k,Y=j)=P(X=k)P(Y=j|X=k)$$ (voir cet exercice ou celui-ci).

Quelques techniques pour calculer des sommes

Pour faire des calculs d'espérances ou de lois marginales, on a souvent besoin de faire des calculs de sommes. On pourra utiliser les sommes connues :

  • les sommes géométriques (pour $p\in]0,1[$) : $$\sum_{n=0}^{+\infty}p^n=\frac 1{1-p},$$ la queue des sommes géométriques $$\sum_{n=N}^{+\infty}p^n=\frac{p^N}{1-p}$$ et aussi $$\sum_{n=0}^{+\infty}n p^n=\frac{p}{(1-p)^2}.$$
  • les sommes reliées à la définition de la fonction exponentielle : $$\sum_{n=0}^{+\infty}\frac{x^n}{n!}=e^x.$$ Si on souhaite calculer $\displaystyle \sum_{n=0}^{+\infty}P(n) \frac{x^n}{n!},$ où $P$ est un polynôme, on décompose $P$ dans la base $(1,X,X(X-1),...)$ pour que des simplifications apparaissent. Par exemple, \begin{align*} \sum_{n=0}^{+\infty}n^2\frac{x^n}{n!}&=\sum_{n=0}^{+\infty}\frac{n(n-1)+n}{n!}{x^n}\\ &=\sum_{n=2}^{+\infty}\frac{x^n}{(n-2)!}+\sum_{n=1}^{+\infty}\frac{x^n}{(n-1)!}\\ &=x^2e^x +xe^x. \end{align*}

(voir cet exercice).