$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthodes : intégrale généralisées et fonctions intégrables

Étude de la convergence d'une intégrale généralisée

Pour étudier une intégrale généralisée $\int_I f$,

  • Étape 1 : on étudie la continuité (par morceaux) de $f$ sur $I$. Il faut vérifier notamment qu'il n'y a pas de problèmes à l'intérieur de $]a,b[$. D'autre part, il est possible que $f$ se prolonge par continuité en $a$ (ou en $b$). Dans ce cas, on n'a pas vraiment affaire à une intégrale impropre en $a$, mais à l'intégrale d'une fonction continue. Si par exemple on vous demande de justifier l'existence de $\int_0^1 \frac{\ln(1+t)}{t}dt$, vous devez dire que $f:t\mapsto \frac{\ln(1+t)}t$ est continue sur $]0,1]$ et se prolonge par continuité en $0$ en posant $f(0)=1$. Ainsi, $\int_0^1\frac{\ln(1+t)}tdt$ existe comme intégrale d'une fonction continue sur un segment.
  • Étape 2 : étude de la convergence. Il y a encore plusieurs méthodes possibles :
    • on connait une primitive de la fonction $f$ : dans ce cas, on conclut en utilisant la définition. C'est assez rare que ce soit possible, mais cela fonctionne pour prouver la convergence de $\int_0^1 \ln(t)dt$ ou de $\int_0^{+\infty}e^{-t}dt$. Par exemple, pour prouver la convergence de $\int_0^1 \ln(t)dt$, on peut dire que $\ln $ est continue sur $]0,1]$ et qu'une primitive est $t\mapsto t\ln t-t$. Ainsi, pour tout $\delta\in ]0,1]$, on a $$\int_\delta^1 \ln(t)dt=\left[t\ln t-t\right]_\delta^1=-\delta\ln\delta+\delta-1.$$ De plus, par comparaison de la fonction logarithme et des fonctions puissance en $0$, on a $$\lim_{\delta\to 0}\delta\ln\delta=0.$$ Ainsi, $\int_\delta^1\ln(t)dt$ admet une limite lorsque $\delta\to 0$, et donc $\int_0^1 \ln(t)dt$ converge. De plus, on a prouvé que $\int_0^1 \ln(t)dt=-1$.
    • par majoration, en se ramenant à la convergence d'une intégrale connue (souvent, une intégrale de Riemann), et en utilisant les théorèmes de croissance comparée. Par exemple, on prouve que pour tout $n\in\mathbb N$, $\int_0^{+\infty}t^n e^{-t}dt$ converge de la façon suivante : la fonction $t\mapsto t^n e^{-t}$ est continue sur $[0,+\infty[$. De plus, par croissance comparée de l'exponentielle et des puissances, $\lim_{t\to+\infty}t^{n+2}e^{-t}=0$. Autrement dit, $t^ne^{-t}=_{+\infty}o\left(\frac1{t^2}\right)$. Puisque $\frac 1{t^2}\geq 0$ et que $\int_1^{+\infty}\frac{dt}{t^2}$ converge, on en déduit que $\int_0^{+\infty} t^ne^{-t}dt$ converge.
    • par minoration, en utilisant le même type de raisonnement. Par exemple, on prouve la divergence de $\int_2^{+\infty}\frac{dt}{\ln t}$ de la façon suivante : la fonction $t\mapsto 1/\ln (t)$ est continue sur $[2,+\infty[$. De plus, par comparaison de la fonction racine carrée et du logarithme, on sait que $\lim_{t\to+\infty}\frac{\sqrt t}{\ln t}=+\infty$. Ainsi, pour $t$ assez grand, on a $\frac1{\ln t}\geq\frac1{\sqrt t}>0$. Puisque $\int_2^{+\infty}\frac{dt}{\sqrt t}$ diverge, on en déduit que $\int_2^{+\infty}\frac{dt}{\ln t}$ diverge.
    • par équivalent : si on démontre que $f(x)\sim_{+\infty}g(x)$ et si $f$ et/ou $g$ sont de signe constant au voisinage de l'infini, alors $\int_a^{+\infty}f(x)dx$ et $\int_a^{+\infty}g(x)dx$ sont de même nature. Pour trouver un équivalent simple, on utilise les techniques usuelles, notamment les développements limités.
    • par intégration par parties. Pour l'étude des certaines intégrales, du type $\int_1^{+\infty}\frac{\sin }{t}dt$, qui ne sont pas absolument convergentes, une intégration par parties permet de se ramener à une intégrale absolument convergente.
Trouver un équivalent du reste ou de l'intégrale partielle d'une intégrale généralisée

Pour déterminer un équivalent du reste ou de l'intégrale partielle d'une intégrale généralisée, on peut utiliser les théorèmes d'intégration des relations de comparaison :

  • parfois, on remplace simplement une fonction $f$ dont on ne sait pas calculer l'intégrale par une fonction $g$ qui lui est équivalente et dont on sait calculer l'intégrale (voir cet exercice).
  • parfois, on réalise une intégration par parties pour arriver à une écriture du type $$\int_a^x f(t)dt=F(x)+\int_a^x g(t)dt.$$ On peut alors conclure par exemple si $g(t)=_b o\big(f(t)\big)$ (voir cet exercice).
Prouver la divergence d'une intégrale généralisée à l'aide de séries

Soit $f:[0,+\infty[\to\mathbb R$ continue par morceaux, et soit $a>0$. On a alors, pour tout $N\in\mathbb N,$ $$\int_0^{Na}f(t)dt=\sum_{k=0}^{N-1}\int_{ka}^{(k+1)a}f(t)dt.$$ Ainsi, la convergence de $\int_0^{+\infty}f(t)dt$ entraîne la convergence de la série $\sum u_k$ où $u_k=\int_{ka}^{(k+1)a}f(t)dt.$ Si on sait prouver la divergence de cette série (par exemple en utilisant des minorations, des arguments de périodicité...) alors on prouve la divergence de l'intégrale (voir cet exercice).

De plus, si $f$ est à valeurs positives, la convergence de $\int_0^{+\infty}f(t)dt$ est équivalente à la convergence de la série $\sum u_k$ et on peut aussi prouver la convergence de la série pour déduire celle de l'intégrale.

Intégrales généralisées et fonctions intégrales