Résumé de cours : Suites et séries de fonction
Soit $A$ une partie de $\mathbb R$; soit $(f_n)$ une suite de fonctions de $A$ dans $\mathbb R$ et $f:A\to \mathbb R$.
On dit que $(f_n)$ converge simplement vers $f$ sur $A$ si : $$\forall \veps>0,\ \forall x\in A,\ \exists n_0\in\mathbb N\textrm{ tel que }\forall n\geq n_0,\ |f_n(x)-f(x)|\leq \veps.$$
On dit que $(f_n)$ converge uniformément vers $f$ sur $A$ si : $$\forall \veps>0,\ \exists n_0\in\mathbb N\textrm{ tel que }\forall x\in A,\ \forall n\geq n_0,\ |f_n(x)-f(x)|\leq \veps.$$
La convergence simple traduit que pour chaque $x\in A$, la suite de réels $(f_n(x))$ converge vers $f(x)$. La convergence uniforme impose en plus que la convergence se fait toujours à la même vitesse. Si toutes les fonctions $f_n$ et $f$ sont bornées, alors $(f_n)$ converge uniformément vers $f$ sur $A$ si et seulement si $(\|f_n-f\|_{A,\infty})$ tend vers $0$, où $$\|g\|_{\infty,A}=\sup\{|g(x)|;\ x\in A\}.$$
Explication de la différence entre convergence simple et convergence uniforme :
Soit $I$ un intervalle de $\mathbb R$, $(f_n)$ une suite de fonctions de $I$ dans $\mathbb R$ et $f:I\to\mathbb R$. La convergence simple préserve les propriétés liées à l'ordre : par exemple, si $(f_n)$ converge simplement vers $f$ sur $I$ et si toutes les $f_n$ sont croissantes, alors $f$ est croissante, si toutes les $f_n$ sont convexes, alors $f$ est convexe. En revanche, les propriétés de régularité ne sont pas conservées par la convergence simple.
En particulier, si toutes les $f_n$ sont continues sur $I$, alors $f$ est continue sur $I$.
- $(f_n)$ converge simplement vers $f$ sur $I$.
- La suite de fonctions $(f'_n)$ converge uniformément vers $g$ sur tout segment contenu dans $I$.
- pour tout $j=0,\dots,k-1$, $(f_n^{(j)})$ converge simplement vers $g_j$ sur $I$;
- $(f_n^{(k)})$ converge uniformément vers $g_k$ sur tous les segments contenus dans $I$.
Ce théorème est souvent appliqué avec $b=+\infty$.
Soit $I$ un intervalle de $\mathbb R$, $(u_n)_{n\geq 0}$ une suite de fonctions de $I$ dans $\mathbb R$ et $S:I\to\mathbb R.$
On dit que la série de fonctions $\sum_{n\geq 0} u_n$ converge simplement vers $S$ sur $I$ si la suite de ses sommes partielles $S_n(x)=\sum_{k=1}^n u_k(x)$ converge simplement vers $S$ sur $I.$
On dit que la série de fonctions $\sum_{n\geq 0} u_n$ converge uniformément vers $S$ sur $I$ si la suite de ses sommes partielles $S_n(x)=\sum_{k=1}^n u_k(x)$ converge uniformément vers $S$ sur $I.$
Si la série de fonctions $\sum_{n\geq 0}u_n$ converge simplement sur $I$, pour $n\in\mathbb N,$ on introduit son reste d'ordre $n$ défini sur $I$ par $R_n(x)=\sum_{k=n+1}^{+\infty}u_k(x).$ Dire que la série $\sum_{n\geq 0} u_n$ converge uniformément sur $I$ revient à dire que la suite des restes $(R_n)$ converge uniformément vers $0$ sur $I$.
On dit que la série de fonctions $\sum_{n\geq 0} u_n$ converge normalement sur $I$ si chaque fonction $u_n$ est bornée sur $I$ et si la série numérique $\sum_{n\geq 0} \|u_n\|_{\infty,I}$ est convergente.
Les théorèmes relatifs aux suites de fonctions restent vrais dans ce nouveau cadre. Ils ont désormais les énoncés suivants :
En particulier, si toutes les $u_n$ sont continues sur $I$, alors $S$ est continue sur $I$.
- $\sum_{n\geq 0} u_n$ converge simplement sur $I$.
- $\sum_{n\geq 0} u_n'$ converge uniformément sur tout segment contenu dans $I$.
- pour tout $j=0,\dots,k-1$, $\sum_{n\geq 0} u_n^{(j)}$ converge simplement sur $I$;
- $\sum_{n\geq 0} u_n^{(k)}$ converge uniformément sur tous les segments contenus dans $I$.
Autrement dit, sous les hypothèses précédentes, $$\lim_{x\to b}\sum_{n=0}^{+\infty}u_n(x)=\sum_{n=0}^{+\infty}\lim_{x\to b}u_n(x).$$
Certains des résultats précédents restent vrais si on définit maintenant nos fonctions sur une partie $A$ d'un espace vectoriel normé $E$, et si elles sont à valeurs dans un autre espace vectoriel normé $F$. C'est par exemple le cas de la préservation de la continuité par convergence uniforme. En revanche, toutes les propriétés relatives à l'intégration et à la dérivation nécessitent que l'ensemble de départ soit un intervalle (il faut bien pouvoir donner un sens aux objets considérés!).