$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Préparer sa kholle : espaces probabilisés

L'exercice qu'il faut savoir faire
Enoncé
Amir et Chloé jouent au jeu suivant : ils lancent successivement deux dés équilibrés. Si Amir obtient un 6, le jeu s'arrête et il a gagné. Si Chloé obtient un 7, le jeu s'arrête et elle a gagné. C'est Amir qui lance les dés le premier. Qui a le plus de chances de gagner?
Indication
Corrigé
L'exercice standard
Enoncé
Des joueurs $A_1,A_2,\dots,A_n,\dots$ s'affrontent de la manière suivante : chaque manche oppose deux concurrents qui ont chacun la probabilité $\frac 12$ de gagner. La première manche oppose $A_1$ et $A_2$ et, à l'étape $n$, si elle a lieu, le gagnant de l'épreuve précédente affronte le joueur $A_{n+1}$. Le jeu s'arrête lorsque, pour la première fois, un joueur gagne deux manches consécutives.
  1. Quelle est la probabilité que l'étape $n$ ait lieu?
  2. En déduire que le jeu s'arrête presque sûrement.
  3. Quelle est la probabilité que le joueur $A_n$ gagne?
Indication
Corrigé
L'exercice pour les héros
Exercice 3 - Tirer un nombre au hasard [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On tire au hasard un nombre entier strictement positif. On suppose que la probabilité d'obtenir $n$ vaut $1/2^n$. Pour $k\in\mathbb N^*$, on note $A_k$ l'événement "$n$ est un multiple de $k$".
  1. Vérifier que ceci définit une probabilité sur $\mathbb N^*$.
  2. Calculer la probabilité de $A_k$ pour $k\in\mathbb N^*$.
  3. Calculer la probabilité de $A_2\cup A_3$.
  4. Montrer que pour $p,q\geq 2$, alors $A_p$ et $A_q$ ne sont pas indépendants.
Indication
Corrigé