Forum de mathématiques - Bibm@th.net
Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...
Vous n'êtes pas identifié(e).
- Contributions : Récentes | Sans réponse
- Accueil
- » Entraide (supérieur)
- » Démonstration théorème d'Euler Lagrange
- » Répondre
Répondre
Résumé de la discussion (messages les plus récents en premier)
- BULFON
- 25-06-2024 19:54:42
Bonjour,
J'essaie de comprendre le formalisme Lagrangien et je suis bloqué par ce développement en série de Taylor :
"Pour étudier l'effet de cette petite variation sur le Lagrangien, nous développons L(q+η,q˙+η˙,t) en série de Taylor autour de (q,q˙,t) La série de Taylor au premier ordre est :
L(q+η,q˙+η˙,t) ≈ L(q,q˙,t) + η.∂L/∂q + η˙. ∂L/∂q˙ "
Quelqu'un pourrait il me donner plus de détails sur ce développement ?
Merci
Autant pour moi j'ai retrouvé la Formule de Taylor-Young a l’ordre 1, en deux variables
f (x0 + h, y0 + k) = f (x0, y0) + h.(∂f/∂x0) + k.(∂f/∂y0) + ||(h, k)||ε(h, k
avec h =η k=η˙ x0 =q y0=q˙