Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt dix-sept moins quarantedeux
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

Bernard-maths
03-08-2022 09:38:44

Bonjour à tous !

Merci au mi-stérieux adaptateur de formules Latex ... Voici ce que donne Maple pour l'octaèdre :

abs(x + y*sqrt(3) + z*sqrt(2) - r) + abs(-2*x + z*sqrt(2) - r) + abs(x - y*sqrt(3) + z*sqrt(2) - r) = (3*r*sqrt(17))/4

kojq.jpg

B-m

Bernard-maths
02-08-2022 16:39:45

Bonjour à tous !

Quelques remarques sur ce qu'on vient de voir ! Nous sommes partis d'un tétraèdre régulier , avec r = 5 et $h = OS = r \sqrt{2} \approx 7.071$.

La formule utilisée nous a donné un anti prisme d'ordre 3 ... MAIS celui-ci comporte en tout 8 faces, c'est un octaèdre ! Irrégulier (hélas ?).

Peut-on le "régulariser" ? En un bel octaèdre à 8 faces équilatérales ?
Eh bien oui, en prenant $h = \dfrac{r\sqrt{2}} {2} \approx 3.5355.$

0dyq.jpg

A gauche le résultat "posé" sur la face ABC de centre O. A droite en le tournant un peu, on "peut voir" que les 3 diagonales sont orthogonales entre-elles ...

VOILA donc le vrai 1er solide de Platon que j'obtiens en fouillant une pyramide !

Bernard-maths

Bernard-maths
31-07-2022 15:59:37

Bonjour à tous ! Me revoilà ...

Voici ce que donne le tétraèdre ...

LGFo2qrdCHu_Pyramide-sur-t%C3%A9tra%C3%A8dre-2022-07-31.jpg

L'image donnée par Maple, et une vue explicative de GeoGebra, où l'on voit le tétraèdre ABCS de départ, avec son symétrique SA'B'C'.
L'mage, elle, donne un anti-prisme d'ordre 3, on y voit en bas et en haut, la base ABC et sa symétrique A'B'C'. Mais reliées par 6 triangles latéraux !

Ah oui, l'équation :

abs(x + y*sqrt(3) + z*sqrt(2)/2 - r) + abs(-2*x + z*sqrt(2)/2 - r) + abs(x - y*sqrt(3) + z*sqrt(2)/2 - r) = (3*r*sqrt(17))/4

La suite plus tard, avec des bases variées ...

Bernard-maths

Bernard-maths
03-04-2022 08:53:38

Bonjour à tous !

On va regarder ce que ça donne pour une pyramide en tétraèdre régulier ! La base est donc un triangle équilatéral ABC, avec A(r,0,0), B(-r/2, r Rac(3)/2,0) et C(-r/2, -r Rac(3)/2,0). Le sommet en est S(0,0,h), avec h = r Rac(2). Reprenons l'équation générale d'un plan (pi) :  [r*cos(AOIi)] x + [r*sin(AOIi)] y + [(p'²+q'²)/h] z = (p'²+q'²).

Erreurs à corriger ...

En attendant on peut trouver les 3 équations des 3 plans.

(p1) : x + y sqrt(3) + z sqrt(2) / 2 = r, (p2) : -2 x + z sqrt(2) / 2 = r, et (p3) : x - y sqrt(3) + z sqrt(2) / 2 = r

Bernard-maths
02-04-2022 10:05:13

Bonsoir à tous ! (hier soir 20h + !)

Si on veut généraliser à une base polygonale régulière de n côtés, donnant une pyramide régulière, on va considérer un cercle de centre O(0,0,0) et de rayon r > 0, le 1er point A(r,0,0), les suivants B(r cos(360°/n),r sin(360°/n),0), C etc ... avec A = A1, B = A2, C = A3, alors Ai(r cos(i*360°/n), r sin(i*360°/n),0) ..., et le sommet S(0,0,h), avec h > 0. Tout ça pour n >= 3 !

On doit trouver les équations des n plans/faces latérales de la pyramide ... donc un vecteur normal par exemple ...
Si Ii est le milieu de [AiAi+1], alors un vecteur normal au plan(SAiAi+1) est le vecteur(ONi), où Ni est la projection de O sur [SIi] ...


Ouf ! Il est tard, demain, 21h et quelques ... un calculateur charitable me donnera la formule d'un vecteur normal à chacun des n plans ... ???

Bernard-maths

Bonjour ! Je ne vois rien venir ! Je vais donc continuer mes calculs. La nuit portant conseil, j'ai une réponse ... en modifiant le point Ni !

LDcj6LycMZH_Pyramide-poly%C3%A8dre-00-2022-04-02.jpg

Sur cette figure, n=3, à gauche la vue de dessus et à droite la vue en 3D. I est le milieu de [AB]. Pas d'indice i, on les mettra après, en généralisant ...(OI) et (SI) sont perpendiculaires à (AB), un vecteur normal au plan (SAB) sera contenu dans le plan (SOI) ...

Si on trace la perpendiculaire à (SI) issue de O, et la parallèle à (z'z) passant par I, ces 2 droites sont dans le plan (SOI), et se coupent en un point N ! Traçons les 3 vecteurs (OI), (SI) et (ON), sur la vue de dessus, on vérifie bien qu'ils sont "superposés en projection", et qu'ils ont donc les mêmes coordonnées en x et y, celles du point I !

On peut poser I = (p',q',0), alors vect(SI) = (p',q',-h), vect(ON) = (p',q',r'), où r' est à trouver ... (avec I = (p',q',0) par "abus de langage").

Mais vect(ON) orthogonal à vect(SI), donc leur produit scalaire est nul, ce qui se traduit par : p'² + q'² - r'h = 0, soit r' = (p'²+q'²)/h = OI²/h !

Ce qui donne N = (p',q',(p'²+q'²)/h) = vect(ON). Reste à le rendre unitaire ... ? On verra ...

Maintenant que nous avons identifié un vecteur normal au plan d'une face de la pyramide, il reste à établir les relations générales pour chaque plan, en fonction de l'indice "i" de la face concernée ...

Ce que nous avons vu était pour N=N1, donc pour i = 1. Ii étant le milieu de [AiAi+1], l'angle associé est (AOIi) = 180°/n + (i-1)*360°/n. Tous les segments [OIi] sont isométriques, de longueur OI = r*cos(180°/n), (r rayon du cercle de départ). Les coordonnées des points Ii et des vect(OIi) sont donc (p'i,q'i,0), avec p'i = r*cos(AOIi) et q'i = r*cos(AOIi)*sin(AOIi).

Pour les points Ni, on rajoutera que r'i = r' = (p'²+q'²)/h !

L'équation du plan (pi) = (SAiAi+1) est donc de la forme : p'i x + q'i y + r'i z = ki, et finalement :
(pi) : [r*cos(AOIi)] x + [r*cos(AOIi)*sin(AOIi)] y + [(p'²+q'²)/h] z = (p'²+q'²) = cte pour tout i.
... ki = (p'²+q'²) pour passer par le (même) sommet S(0,0,h) !

Erreurs à corriger ! Bernard-maths

Bernard-maths
01-04-2022 19:51:42

Bonsoir à tous !

En mai dernier je venais de découvrir des utilisations intéressantes des fonctions max et min, mais je n'avais pas encore pensé à les utiliser ici. Voici donc ce que ça donne !

Au-dessus : abs(x) + abs(y) + z = 5. Pyramide "infinie" sans base : les 4 pans "supérieurs" de l'octaèdre de sommet S, sans limite ...

LDcjtL5Wr3H_Pyramides-Bib-2022-04-02.png

Et dessous : max(abs(x) + abs(y) + z - 5, -z). Vues de "dessus", et de "dessous", pour voir la base ABCD ! On a donc bien la pyramide de base ABCD et de sommet S !

Bernard-maths
01-04-2022 13:53:27

La suite !

On trouve une formule connue, surprise : le cuboctaèdre !

LDbmZSv1PwH_Pyramide-sur-carr%C3%A9---cubocta%C3%A8dre-2022-04-01.jpg

LDcjbVF80IH_Pyramide-sur-carr%C3%A9---cubocta%C3%A8dre-2-2022-04-02.jpg

abs(x + y + z - 5) + abs(x - y - z + 5) + abs(x + y - z + 5) + abs(x - y + z - 5) = 5*2*5*sqrt(6)/sqrt(37.5)

On peut voir que le cuboctaèdre a bien pour face inférieure le carré ABCD ... vue par-dessous.

Ainsi, je pensais obtenir une équation de pyramide ! Mais j'avais oublié ce qu'il y avait en-dehors !

A plus, pour de nouvelles découvertes ...

Bernard-maths

Zebulor
01-04-2022 13:20:17

Hello !
Bernard : je viens de te lire vite fait . Tu sembles utiliser à un moment la propriété $\frac {a}{b}=\frac {c}{d}=\frac {a+c}{b+d}$

Bernard-maths
01-04-2022 09:14:19

Bonjour à tous !

En considérant une pyramide régulière, à base de polygone régulier, j'ai constaté que pour tout point de la base (le polygone surface), la somme des distances aux plans/côtés de la pyramide est constante ! Prenons le cas d'un carré.

LDbjVC1HYPH_bis.jpg

Sur cette figure, le carré bleuté ABCD est la base d'une pyramide de sommet S, les 4 côtés triangulaires verts sont transparents ... Un point M est sur la base ABCD, et se projette en K1, K2, K3 et K4 sur les plans/faces verts, ainsi qu'en Q1, Q2, Q3 et Q4 sur les 4 côtés du carré.

Le théorème des 3 perpendiculaires nous dit que les triangles MiKiQi, i = 1 à 4, sont rectangles  en Ki ... et qu'ils sont semblables, les angles en Qi étant égaux. Ainsi on a donc : MK1+MK2+MK3+MK4 = (MQ1+MQ2+MQ3+MQ4) * sin(MQIKI) = 2 AB * sin(MQIKI) = constante !

En fait ici, les 4 triangles sont ceux d'un octaèdre pour z>=0 ... (penser à abs(x)+abs(y)+abs(z)=5).

Dans ce repère, les 4 équations des faces sont : x+y+z=5, x-y-z=-5, x+y-z=-5 et x-y+z=5. les points M de la base vérifient donc l'équation : abs(x+y+z-5) + abs(x-y-z+5) + abs(x+y-z+5) + abs(x-y+z-5) = 2*5 Rac(2) * sin(Qi).

Si l'on positionne M en O, Q1 milieu de [AB], on peut voir que sin(Qi) = OS/SQi = 5 / SQi = 5 / Rac(OS²+OQi²) = 5/Rac(37.5). Hum ... il ne faut pas oublier de diviser à gauche par ... Rac(3) !

Ainsi l'équation devient : abs(x+y+z-5) + abs(x-y-z+5) + abs(x+y-z+5) + abs(x-y+z-5) = 50*Rac(6)/Rac(37.5) !

Que donne cette équation en général ? Qu'en pensez-vous ? ... Voir la suite !

Bernard-maths

Bernard-maths
15-05-2021 10:17:51

Bonjour à tous !

En fait, je pensais qu'une méthode fonctionnait, lorsque je me suis aperçu qu'il y avait des débordements : donc y'a plus rien à voir ainsi !
J'ai rencontré quelques problèmes dans des démonstrations ... il me faut chercher plus ...

Si vous avez quelque idée, surtout n'hésitez pas !!!

A bientôt, Bernard-maths


EN FAIT, JE VAIS VOUS MONTRER CE QUE JE PENSAIS, ET CE QUE CA DONNE !!!

Toutefois je crois bien avoir quand même trouvé des pyramides, et des variantes ...

Pied de page des forums