$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Variance et écart-type d'une variable aléatoire

Soit $(\Omega,\mathcal T,P)$ un espace de probabilité et $X:\Omega\to\mathbb R$ une variable aléatoire. Lorsque $X^2$ est d'espérance finie, on appelle variance de $X$ le réel $$V(X)=E\big( (X-E(X))^2\big)=E(X^2)-\big(E(X)\big)^2$$ et écart-type de $X$ le réel $\sigma(X)=\sqrt{V(X)}$.

Comme pour une série statistique, la variance mesure la dispersion d'une variable aléatoire : plus précisément, elle est égale à la moyenne du carré des écarts à la moyenne. Elle vérifie les propriétés suivantes :

  • pour tous réels $a$ et $b,$ $V(aX+b)=a^2V(X).$
  • si $X_1,\dots,X_n$ des variables aléatoires admettant des moments d'ordre $2$. Alors $$V\left(\sum_{i=1}^n X_i\right)=\sum_{i=1}^n V(X_i)+2\sum_{1\leq i<j\leq n}\big(E(X_iX_j)-E(X_i)E(X_j)\big).$$ En particulier, si les $X_i$ sont deux à deux indépendantes, alors $$V\left(\sum_{i=1}^n X_i\right)=\sum_{i=1}^n V(X_i).$$
Consulter aussi
Recherche alphabétique
Recherche thématique