$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Formule des probabilités composées

Théorème : Soient $A_1,\dots,A_m$ des événements tels que $P(A_1\cap\dots\cap A_m)\neq 0$. Alors : $$P(A_1\cap\dots\cap A_m)=P(A_1)P(A_2|A_1)P(A_3|A_1\cap A_2)\cdots P(A_m|A_1\cap \dots\cap A_{m-1}).$$

Ex : Une urne contient initialement 7 boules noires et 3 boules blanches. On tire successivement 3 boules : si on tire une noire, on l'enlève, si on tire une blanche, on la retire, et on ajoute une noire à la place. Quelle est la probabilité de tirer 3 blanches à la suite?

On note $B_i$ l'événement "La i-ème boule tirée est blanche". La probabilité recherchée est : $$P(B_1\cap B_2\cap B_3)=P(B_3|B_1\cap B_2)P(B_2|B_1)P(B_1).$$ Clairement, $P(B_1)=3/10$. Maintenant, si $B_1$ est réalisé, avant le 2ème tirage, l'urne est constituée de 8 boules noires et 2 blanches. On a donc : $P(B_2|B_1)=2/10$. Si $B_1$ et $B_2$ sont réalisés, avant le 3è tirage, l'urne est constituée de 9 boules noires et 1 blanche. On en déduit $P(B_3|B_1\cap B_2)=1/10$. Finalement : $$P(B_1\cap B_2\cap B_3)=\frac 6{1000}=\frac 3 {500}.$$

La formule des probabilités composées apparait pour la première fois en 1718 dans un ouvrage de De Moivre nommé Doctrine of Chance.
Consulter aussi
Recherche alphabétique
Recherche thématique