Fraction rationnelle
Une fraction rationnelle à coefficients dans $\mathbb K$ est le quotient $\frac PQ$ de deux polynômes de $\mathbb K[X]$ avec $Q\neq 0$. Par définition, $\frac PQ=\frac RS$ si et seulement si $PS=QR$. On note $\mathbb K(X)$ l'ensemble des fractions à coefficients dans $\mathbb K$. Le couple $(P,Q)$ est appellé un représentant de la fraction rationnelle $P/Q.$
On définit l'addition et la multiplication de fractions rationnelles de façon naturelle : $$\frac{P}{Q}+\frac{R}{S}=\frac{PS+RQ}{QS},$$ $$\frac{P}{Q}\times \frac{R}{S}=\frac{PR}{QS}.$$ Muni de ces deux opérations, $\mathbb K(X)$ est un corps.
Soit $F\in\mathbb K(X)$ une fraction rationnelle. Alors $F$ s'écrit $\frac PQ$ où $P,Q\in\mathbb K[X]$ sont premiers entre eux. Cette écriture est unique, à un facteur multiplicatif près. Elle s'appelle la représentation irréductible de $F$.
La construction de $\mathbb K(X)$ à partir de l'anneau intègre $\mathbb K[X]$ suit une méthode générale de la construction du corps des fractions d'un anneau intègre.