Préparer la math sup : nombres complexes
Les nombres complexes sont un des chapitres vraiment nouveaux du programme de Terminale S. Ils seront à nouveau étudiés au début de la Math Sup, avec des révisions et des compléments. Préparons ce chapitre...Pour réviser...
Enoncé 

Mettre sous forme algébrique les nombres complexes suivants :
$$\begin{array}{lll}
\mathbf{1.}z_1=4(-2+3i)+3(-5-8i)&\quad\mathbf{2.}z_2=(2-i)(3+8i)&\displaystyle\quad{\mathbf 3.}z_3=\frac{-4}{1+i\sqrt 3}\\
\displaystyle{\mathbf 4.}z_4=\frac{(3+5i)^2}{1-2i}&\quad{\mathbf 5.}z_5=(1+i)^3&\displaystyle\quad{\mathbf 6.}z_6=\left(\frac{1+i}{2-i}\right)^2+\frac{3+6i}{3-4i}\\
\displaystyle{\mathbf 7.}z_7=(1-i)\overline{1+i}.
\end{array}
$$
Enoncé 

Mettre sous forme exponentielle les nombres complexes suivants :
$$\begin{array}{lll}
{\mathbf 1.}z_1=1+i\sqrt 3&\quad\mathbf 2.z_2=9i&\quad{\mathbf 3.}z_3=-3\\
\displaystyle{\mathbf 4.}z_4=\frac{-i\sqrt 2}{1+i}&\displaystyle \quad\mathbf{5.}z_5=\frac{(1+i\sqrt 3)^3}{(1-i)^5}&\quad{\mathbf 6.} z_6=\sin x+i\cos x.
\end{array}
$$
Exercice 3
- Les deux à la fois - avec application [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé 

On considère les nombres complexes suivants :
$$z_1=1+i\sqrt 3,\ z_2=1+i\textrm{ et }z_3=\frac{z_1}{z_2}.$$
- Écrire $z_3$ sous forme algébrique.
- Écrire $z_3$ sous forme trigonométrique.
- En déduire les valeurs exactes de $\cos\frac\pi{12}$ et $\sin\frac\pi{12}$.
Enoncé 

Soit $z\in\mathbb C$. Montrer que $|z-i|=|z+i|$ si et seulement si $z$ est réel.
Pour approfondir…
Enoncé 

Déterminer la forme algébrique des nombres complexes suivantes :
$$\mathbf 1. z_1=(2+2i)^6\quad \mathbf 2. z_2=\left(\frac{1+i\sqrt 3}{1-i}\right)^{20}\quad\mathbf 3. z_3=\frac{(1+i)^{2000}}{(i-\sqrt 3)^{1000}}.$$
Enoncé 

Trouver les entiers $n\in\mathbb N$ tels que $(1+i\sqrt 3)^n$ soit un réel positif.
Enoncé 

On dit qu'un entier naturel $N$ est somme de deux carrés s'il existe deux entiers naturels $a$ et $b$ de sorte que $N=a^2+b^2$.
- Écrire un algorithme permettant de déterminer si un entier naturel $N$ est somme de deux carrés.
- On souhaite prouver que, si $N_1$ et $N_2$ sont sommes de deux carrés, alors leur produit $N_1N_2$ est aussi somme de deux carrés. Pour cela, on écrit $N_1=a^2+b^2$ et $N_2=c^2+d^2$, et on introduit $z_1=a+ib$, $z_2=c+id$. Comment écrire $N_1$ et $N_2$ en fonction de $z_1$ et $z_2$?
- En déduire que $N_1N_2$ est somme de deux carrés.
- Démontrer que si $N$ est somme de deux carrés, alors pour tout entier $p\geq 1$, $N^p$ est somme de deux carrés.
Enoncé 

Déterminer le lieu géométrique des points $M$ dont l'affixe $z$ vérifie
$$
\begin{array}{ll}
\mathbf 1.\ \displaystyle \frac{|z-3|}{|z-5|}=1&\mathbf{2.}\ \displaystyle \frac{|z-3|}{|z-5|}=\frac{\sqrt 2}2\\
\mathbf 3.\ |(1+i)z-2i|=2
\end{array}$$
Pour préparer la suite...
Enoncé 

On cherche à déterminer les nombres complexes $z$ tels que $z^2=15-8i$. Pour cela, on pose $z=x+iy$.
- Montrer que $z^2=15-8i$ si et et seulement si $(x,y)$ est solution du système : $$\left\{\begin{array}{rcl} x^2-y^2&=&15\\ 2xy&=&-8. \end{array}\right.$$
- Démontrer que si $z^2=15-8i$, on a aussi $x^2+y^2=17$.
- En déduire tous les nombres complexes $z$ tels que $z^2=15-8i$.
Exercice 10 
- Racine carrée d'un nombre complexe [Signaler une erreur] [Ajouter à ma feuille d'exos]


Enoncé 

Calculer les racines carrées des nombres complexes suivants :
$z_1=3+4i,\ z_2=8-6i.$
Enoncé 

On cherche à résoudre l'équation
$$z^3+(1+i)z^2+(i-1)z-i=0.$$
- Rechercher une solution imaginaire pure $ai$ à l'équation.
- Déterminer $b,c\in\mathbb R$ tels que $$z^3+(1+i)z^2+(i-1)z-i=(z-ai)(z^2+bz+c).$$
- En déduire toutes les solutions de l'équation.
- Sur le même modèle, résoudre l'équation $z^3-(2+i)z^2+2(1+i)z-2i=0$.