$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Math spé : Exercices sur la topologie des espaces vectoriels normés

Ouverts et fermés
Enoncé
Déterminer si les ensembles suivants sont ouverts ou fermés : $$\begin{array}{lll} A=\{(x,y)\in \mtr^2 \mid 0<\vert x-1\vert <1 \}&\quad\quad& B=\{(x,y)\in \mtr^2 \mid 0\leq x\leq y\}\\ C=\{(x,y)\in \mtr^2 \mid \vert x\vert <1,\; \vert y\vert \leq 1 \}&\quad\quad& D=\{(x,y)\in \mtr^2 \mid x\in \mtq\textrm{ et }y\in \mtq \}\\ E=\{(x,y)\in \mtr^2 \mid x\not\in \mtq \textrm{ ou }\ y\not\in \mtq \}&\quad\quad& F=\{(x,y)\in \mtr^2 \mid x^2+y^2 <4 \}. \end{array}$$
Corrigé
Exercice 2 - Exemples d'ouverts et de fermés de $\mathbb R$ [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Dans l'espace vectoriel normé $\mathbb R$, déterminer si les parties suivantes sont ouvertes ou fermées : $\mathbb N$, $\mathbb Z$, $\mathbb Q$, $[0,1[$, $[0,+∞[$, $]0,1[\cup \{2\}$, $\{1/n, n \in\mathbb N^*\}$, $\bigcap_{n\geq 1}]-1/n,1/n[$.
Corrigé
Exercice 3 - Ouverts ou fermés dans l'espace des fonctions continues [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathcal C([0,1],\mathbb R)$. On pose $$O=\{f\in E:\ f(1)>0\}\textrm{ et }F=\left\{f\in E:\ \int_0^{1/2}f(t)dt\leq 0\right\}.$$
  1. Est-ce que $O$ est un ouvert de $(E,\|\cdot\|_\infty)?$ de $(E,\|\cdot\|_1)?$
  2. Est-ce que $F$ est un fermé de $(E,\|\cdot\|_\infty)?$ de $(E,\|\cdot\|_1)?$
Indication
Corrigé
Exercice 4 - Parties ouvertes et fermées dans des ensembles de fonctions [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des fonctions bornées de $\mathbb R$ dans $\mathbb R$ et $F=\mathcal C([0,1],\mathbb R)$.
  1. On pose $A_1=\{f\in E:\ \forall x\in\mathbb R,\ f(x)\geq 0\}.$ Est-ce que $A_1$ est une partie fermée de $(E,\|\cdot\|_\infty)$?
  2. On pose $A_2=\{f\in E:\ \forall x\in\mathbb R,\ f(x)>0\}.$ Est-ce que $A_2$ est une partie ouverte de $(E,\|\cdot\|_\infty)$?
  3. On pose $A_3=\{f\in F:\ \forall x\in[0,1],\ f(x)>0\}.$ Est-ce que $A_3$ est une partie ouverte de $(F,\|\cdot\|_\infty)$?
  4. Est-ce que $A_3$ est une partie ouverte de $(F,\|\cdot\|_1)$?
Indication
Corrigé
Enoncé
Soit $\lambda>0$. Pour tout entier $n\geq 1$, on note $B_n$ le disque $$B_n=\left\{(x,y)\in\mathbb R^2;\ \left(x-\frac 1n\right)^2+\left(y-\frac 1n\right)^2\leq \frac{\lambda^2}{n^2}\right\}.$$
  1. A quelle condition sur $\lambda$ a-t-on $B_{n+1}\subset B_n$.
  2. Soit $B=\bigcup_{n\geq 1} B_n$. Donner une condition nécessaire et suffisante sur $\lambda$ pour que $B$ soit fermé.
Indication
Corrigé
Exercice 6 - Somme d'un ensemble et d'un ouvert ou d'un fermé [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(E,N)$ un espace vectoriel normé, et $A$ et $B$ deux parties de $E$. On définit : $$A+B=\left\{z\in E;\ \exists x\in A,\ \exists y\in B,\ z=x+y\right\}.$$
  1. Démontrer que si $A$ est ouvert, alors pour tout $b\in E$, $A+\{b\}$ est ouvert.
  2. Démontrer que si $A$ est ouvert, alors $A+B$ est ouvert.
  3. Démontrer que les parties $A=\{(x,y)\in\mathbb R^2;\ xy=1\}$ et $B=\{0\}\times \mathbb R$ sont fermées.
  4. Démontrer que $A+B$ n'est pas fermée, pour $A$ et $B$ les parties de $\mathbb R^2$ introduites à la question précédente.
Indication
Corrigé
Exercice 7 - Sous-espace vectoriel ouvert [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé et $F$ un sous-espace vectoriel de $E$. On suppose que $F$ est ouvert. Démontrer que $F=E$.
Indication
Corrigé
Exercice 8 - Séparation par des ouverts de deux parties à distance positive [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé et $A$, $B$ deux parties de $E$. On suppose que $\inf_{x\in A,y\in B}\|x-y\|>0$. Démontrer qu'il existe deux ouverts $U$ et $V$ de $E$ tels que $A\subset U$, $B\subset V$ et $U\cap V=\varnothing$.
Indication
Corrigé
Exercice 9 - Tout ouvert de $\mathbb R$ est réunion d'intervalles ouverts [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Dans cet exercice, la notation $(x,y)$ désigne le segment $[x,y]$ ou le segment $[y,x]$ suivant l'ordre de $x$ et de $y$. On considère $U$ un ouvert de $\mathbb R$. On définit une relation sur les éléments de $U$ par $$x\mathcal R y\iff (x,y)\subset U.$$
  1. Démontrer que $\mathcal R$ est une relation d'équivalence. Pour $x\in U$, on note $C(x)$ la classe d'équivalence de $x$.
  2. Démontrer que $C(x)$ est un intervalle.
  3. Démontrer que $C(x)$ est un intervalle ouvert.
  4. En déduire que $U$ est réunion d'intervalles ouverts deux à deux disjoints.
Indication
Corrigé
Exercice 10 - Quelques parties de l'ensemble des suites bornées [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des suites réelles bornées, muni de la norme $\|u\|_\infty=\sup_{n\in\mathbb N}|u_n|.$ Déterminer si les ensembles suivants sont fermés ou non : $$ \begin{array}{lll}A=\{\textrm{suites croissantes}\},&\ &B=\{\textrm{suites convergeant vers 0}\}\\ C=\{\textrm{suites périodiques}\}\\ \end{array} $$
Corrigé
Exercice 11 - Ouverts fermés d'un espace vectoriel normé [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé. Démontrer que les seules parties à la fois ouvertes et fermées de $E$ sont $\varnothing$ et $E$.
Indication
Corrigé
Intérieur et adhérence
Enoncé
Dessiner, puis déterminer l'intérieur et l'adhérence des parties de $\mathbb R^2$ suivantes : \begin{array}{lll} A=\left\{(x,y)\in\mathbb R^2;\ x>0\right\}&\quad& B=\left\{(x,y)\in\mathbb R^2; \ xy=1\right\}\\ C=\left\{(x,y)\in\mathbb R^2;\ xy>1\right\}&\quad& D=\left\{(x,y)\in\mtr^2\mid x^2+y^2\le 2\right\} \setminus \left\{(x,y)\in \mtr^2 \mid (x-1)^2+y^2<1\right\}. \end{array}
Corrigé
Enoncé
Soit $E$ un espace vectoriel normé. Montrer que l'adhérence d'une boule ouverte est la boule fermée de même centre et même rayon.
Indication
Corrigé
Exercice 14 - Adhérence et intérieur d'un sous-espace vectoriel [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé, et $V$ un sous-espace vectoriel de $E$.
  1. Montrer que $\bar V$ est un sous-espace vectoriel de $E$.
  2. Montrer que si $\stackrel{\circ}V\neq\varnothing$, alors $V=E$.
  3. Application 1 : soit $H$ un hyperplan de $E$. Démontrer que $H$ est ou bien fermé ou bien dense dans $E$.
  4. Application 2 : soit $A$ une partie de $E.$ Démontrer que $\vect(\bar A)\subset\overline{\vect(A)}$.
Indication
Corrigé
Exercice 15 - Adhérence dans l'espace des fonctions continues [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère sur $E$ l'espace vectoriel des fonctions continues de $[0,1]$ dans $\mathbb R$ les deux normes suivantes : $$\|f\|_\infty=\sup_{t\in [0,1]}|f(t)|\textrm{ et }\|f\|_1=\int_0^1 |f(t)|dt.$$ On note $F=\{f\in E;\ f(0)=0\}$. Déterminer l'adhérence de $F$ dans $E$ pour chacune des deux normes précédentes.
Indication
Corrigé
Exercice 16 - Exemple dans les fonctions continues [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des fonctions continues sur $[0,1]$ à valeurs dans $\mathbb R$, muni de $\|\cdot\|_\infty$. On note $D$ l'ensemble des fonctions de $E$ qui sont dérivables et $P$ l'ensemble des fonctions de $E$ qui sont polynomiales. Déterminer l'intérieur de $D$ et de $P$.
Indication
Corrigé
Exercice 17 - Opérations ensemblistes, intérieur et adhérence [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $A,B$ deux parties d'un espace vectoriel normé $(E,\|\cdot\|)$.
  1. On suppose $A\subset B$. Démontrer que $\mathring A\subset\mathring B$ et que $\bar A\subset\bar B$.
  2. Démontrer que $(A\cap B)^\circ=\mathring A\cap\mathring B$ et que $\mathring A\cup\mathring B\subset ( A\cup B)^\circ$, mais que l'inclusion peut être stricte.
  3. Comparer $\overline{A\cap B}$ et $\bar A\cap \bar B$, puis $\overline{A\cup B}$ et $\bar A\cup \bar B$.
Indication
Corrigé
Exercice 18 - Fermeture et adhérence d'un convexe [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $C$ une partie convexe d'un espace vectoriel normé. Démontrer que l'adhérence de $C$ est convexe, puis que l'intérieur de $C$ est convexe.
Indication
Corrigé
Exercice 19 - Adhérence de la somme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé et $A,$ $B$ deux parties de $E.$
  1. Démontrer que $\overline A+\overline B\subset \overline{A+B}$.
  2. On suppose que $E=\mathbb R^2$ et on pose $A=\{(x,y)\in(\mathbb R_+^*)^2:\ xy=1\},$ $B=\mathbb R\times\{0\}.$ Calculer $A+B$, $\overline A$, $\overline B$ et $\overline{A+B}$. Que peut-on en déduire?
Indication
Corrigé
Exercice 20 - Un exemple un peu compliqué [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Donner un exemple d'ensemble $A$ tel que $A$, l'adhérence de $A$, l'intérieur de $A$, l'adhérence de l'intérieur de $A$ et l'intérieur de l'adhérence de $A$ sont des ensembles distincts deux à deux.
Indication
Corrigé
Enoncé
Soit $A$ une partie d'un espace vectoriel normé $E$. On rappelle que la frontière de $A$ est l'ensemble $\Fr(A)=\bar A\backslash \stackrel{\circ}{A}=\bar A\cap \overline{C_E A}$. Montrer que :
  1. $ \Fr(A)=\{x\in E \mid \forall \epsilon>0, B(x,\epsilon)\cap A \neq\emptyset \textrm{ et } B(x,\epsilon)\cap C_E A\neq\emptyset\}$.
  2. $\Fr(A)=\Fr(C_E A)$.
  3. $A$ est fermé si et seulement si $\Fr(A)$ est inclus dans $A$.
  4. $A$ est ouvert si et seulement si $\Fr(A)\cap A=\emptyset$.
  5. Montrer que si $A$ est fermé, alors $\Fr(\Fr(A))=\Fr(A)$.
Indication
Corrigé
Exercice 22 - Valeur d'adhérence et adhérence de l'ensemble des valeurs! [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(E,\|\cdot\|)$ un espace vectoriel normé et $(u_n)$ une suite de $E.$ On note $V$ l'ensemble des valeurs d'adhérence de $(u_n).$
  1. Démontrer que $V=\bigcap_{n\in\mathbb N}\overline{\{u_p:\ p\geq n\}}.$
  2. En déduire que $V$ est fermé.
Indication
Corrigé
Exercice 23 - Diamètre d'une partie bornée [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé Soit $A$ une partie non vide et bornée de $E$. On définit $\diam(A)=\sup \{\|y-x\|, x,y\in A\}$.
  1. Démontrer que $\bar A$ et $\Fr(A)$ sont également bornés.
  2. Comparer $\diam(A)$, $\diam(\stackrel{\circ}{A})$ et $\diam(\bar A)$ lorsque $\stackrel{\circ}{A}$ est non vide.
    1. Montrer que $\diam(\Fr(A)) \le \diam(A)$.
    2. Soit $x$ un élément de $A$, et $u$ un élément de $E$ avec $u\neq 0$. On considère l'ensemble $X=\{t\ge 0 \mid x+tu\in A\}$. Montrer que $\sup X$ existe.
    3. En déduire que toute demi-droite issue d'un point $x$ de $A$ coupe $\Fr(A)$.
    4. En déduire que $\diam(\Fr(A)) = \diam (A)$.
Indication
Corrigé
Partie dense
Exercice 24 - Intersection d'ouvert denses [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $U$ et $V$ deux ouverts denses d'un espace vectoriel normé $E$. Démontrer que $U\cap V$ reste dense.
Corrigé
Exercice 25 - Tantôt fermé, tantôt dense [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathcal C([0,1],\mathbb R)$ et $F=\{f\in E;\ f(0)=0\}$.
  1. On munit $E$ de la norme $\|f\|_\infty=\sup_{x\in [0,1]}|f(x)|$. Démontrer que $F$ est fermé dans $(E,\|\cdot\|_\infty)$.
  2. On munit $E$ de la norme $\|f\|_1=\int_{0}^1|f(x)|dx$. Démontrer que $F$ est dense dans $(E,\|\cdot\|_1)$.
Indication
Corrigé
Exercice 26 - Différence de deux suites [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $(u_n)$ et $(v_n)$ deux suites de nombres réels telles que $$u_n\to+\infty,\ v_n\to+\infty,\ u_{n+1}-u_n\to 0.$$
  1. Soit $\veps>0$ et $n_0\in\mathbb N$ tels que, pour tout $n\geq n_0$, $|u_{n+1}-u_n|\leq\veps$. Démontrer que, pour tout $a\geq u_{n_0}$, il existe $n\geq n_0$ tel que $|u_n-a|\leq \veps$.
  2. En déduire que $\{u_n-v_p;\ n,p\in\mathbb N\}$ est dense dans $\mathbb R$.
  3. Montrer que l'ensemble $\{\cos(\ln n);\ n\geq 1\}$ est dense dans $[-1,1]$.
Indication
Corrigé
Exercice 27 - Sous-groupes de $\mathbb R$ [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $H$ un sous-groupe de $(\mathbb R,+)$ non réduit à $\{0\}$.
  1. Justifier l'existence de $m=\inf\{x\in H;\ x>0\}$.
  2. On suppose que $m>0$. Démontrer que $m\in H$ puis que $H=m\mathbb Z$.
  3. On suppose que $m=0$. Démontrer que $H$ est dense dans $\mathbb R$.
  4. En déduire que, si $a$ et $b$ sont deux réels non nuls, $a\mathbb Z+b\mathbb Z$ est dense dans $\mathbb R$ si et seulement si $\frac ab\notin\mathbb Q$.
Indication
Corrigé
Applications continues
Enoncé
Démontrer que les deux ensembles suivants sont ouverts : $$F=\left\{(x,y)\in\mtr^2;\ x^2<\exp(\sin y)+ 12\right\},\quad\quad G=\{(x,y)\in\mtr^2; -1<\ln (x^2+1)<1\}.$$
Indication
Corrigé
Exercice 29 - Continuité et équation fonctionnelle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé, et $h:E\to E$ une application continue admettant une limite $\ell$ en $0$ et vérifiant $h(x)=h(x/2)$ pour tout $x\in E$. Démontrer que $h$ est constante.
Indication
Corrigé
Exercice 30 - Exemple de fonction lipschitzienne [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(E,\|\cdot\|)$ un espace vectoriel normé. Démontrer que $f:E\to\mathbb R,$ $\displaystyle x\mapsto \frac1{1+\|x\|}$ est $1$-lipschitzienne.
Indication
Corrigé
Exercice 31 - Fonction continue et bijection réciproque continue [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(E,\|\cdot\|)$ un espace vectoriel normé. Soit $g:E\to E,$ $x\mapsto \frac{x}{1+\|x\|}.$ Démontrer que $g$ est une bijection de $E$ dans $B(0,1)$ puis que $g$ et $g^{-1}$ sont continues.
Indication
Corrigé
Exercice 32 - Fonctions continues sur l'espace des fonctions continues! [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathcal C([0,1],\mathbb R)$ muni de $\|\cdot\|_\infty.$ Démontrer que $\varphi:E\to\mathbb R,$ $f\mapsto \inf_{[0,1]}f$ est continue.
Indication
Corrigé
Exercice 33 - Séparation de deux fermés [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $A$ et $B$ deux fermés d'un espace vectoriel normé $(E,\|\cdot\|)$.
  1. Démontrer que $A\cap B=\varnothing\iff \forall x\in E,\ d(x,A)+d(x,B)>0$.
  2. On suppose que $A$ et $B$ sont disjoints. Démontrer qu'il existe $f:E\to \mathbb R$ continue telle que $f_{|A}=0$ et $f_{|B}=1$.
  3. En déduire qu'il existe deux ouverts $U$ et $V$ de $E$ tels que $A\subset U$, $B\subset V$ et $U\cap V=\varnothing$.
Indication
Corrigé
Exercice 34 - Une équation fonctionnelle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f:\mathbb R\to\mathbb R$ une fonction continue telle que $$\forall x,y\in\mathbb R,\ f\left(\frac{x+y}2\right)=\frac{1}{2}\big(f(x)+f(y)\big).$$
  1. Démontrer que $\mathcal D=\{p/2^n;\ p\in\mathbb Z,\ n\in\mathbb N\}$ est dense dans $\mathbb R$.
  2. Démontrer que si $f$ s'annule en 0 et en 1, alors $f=0$.
  3. Conclure que dans le cas général, $f$ est affine.
Indication
Corrigé
Exercice 35 - Espace vectoriel des fonctions lipschitziennes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $A$ une partie bornée d'un espace vectoriel normé $(E,\|\cdot\|)$. On note $\mathcal L$ l'espace vectoriel des applications lipschitziennes de $A$ dans $E$.
  1. Démontrer que les éléments de $\mathcal L$ sont des fonctions bornées.
  2. Pour $f\in\mathcal L$, on pose $$K_f=\{k\in\mathbb R_+;\ \forall (x,y)\in A^2,\ \|f(x)-f(y)\|\leq k\|x-y\|\}.$$ Démontrer que $K_f$ admet une borne inférieure. Dans la suite, on notera $C_f$ cette borne inférieure.
  3. Justifier que $C_f\in K_f$.
  4. Démontrer que si $f,g\in\mathcal L$, alors $C_{f+g}\leq C_f+C_g$.
  5. Pour $a\in A$, on note $N_a(f)=\|f(a)\|+C_f$. Démontrer que $N_a$ est une norme sur $\mathcal L$.
  6. Soient $a\neq b\in A$. Les normes $N_a$ et $N_b$ sont-elles équivalentes?
Indication
Corrigé
Exercice 36 - Continuité uniforme en deux variables [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
La fonction $f:\mathbb R^2\to\mathbb R,\ (x,y)\mapsto xy$ est-elle uniformément continue?
Corrigé
Limites et continuité en pratique
Exercice 37 - Calcul de limites détaillé [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Montrer que si $x$ et $y$ sont des réels, on a : $$2|xy|\leq x^2+y^2$$
  2. Soit $f$ l'application de $A=\mtr^2\backslash\{(0,0)\}$ dans $\mtr$ définie par $$f(x,y)=\frac{3x^2+xy}{\sqrt{x^2+y^2}}.$$ Montrer que, pour tout $(x,y)$ de $A$, on a : $$|f(x,y)|\leq 4\|(x,y)\|_2,$$ où $\|(x,y)\|_2=\sqrt{x^2+y^2}.$ En déduire que $f$ admet une limite en $(0,0)$.
Indication
Corrigé
Enoncé
Les fonctions suivantes ont-elles une limite en l'origine?
  1. $\dis f(x,y,z)=\frac{xy+yz}{x^2+2y^2+3z^2}$;
  2. $\dis f(x,y)=\left(\frac{x^2+y^2-1}{x}\sin x,\frac{\sin(x^2)+\sin(y^2)}{\sqrt{x^2+y^2}}\right)$.
  3. $\dis f(x,y)=\frac{1-\cos(xy)}{xy^2}$.
Indication
Corrigé
Exercice 39 - Limites à paramètres [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $\alpha,\beta>0$. Déterminer, suivant les valeurs de $\alpha$ et $\beta$, si la fonction $$f(x,y)=\frac{x^\alpha y^\beta}{x^2+y^2}$$ admet une limite en $(0,0)$.
Indication
Corrigé
Enoncé
Soit $f$ la fonction définie sur $\mtr^2$ par $$f(x,y)=\frac{xy}{x^2+y^2}\textrm{ si }(x,y)\neq (0,0)\textrm{ et }f(0,0)=0.$$ La fonction $f$ est-elle continue en (0,0)?
Indication
Corrigé
Enoncé
Démontrer que la fonction $f:\mathbb R^2\to\mathbb R$ définie par $$f(x,y)=\left\{ \begin{array}{ll} 2x^2+y^2-1&\textrm{ si }x^2+y^2>1\\ x^2&\textrm{ sinon } \end{array} \right. $$ est continue sur $\mathbb R^2$.
Indication
Corrigé
Exercice 42 - Prolongement par continuité [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Démontrer que la fonction définie par $f(x,y)=\frac{\sin (xy)}{xy}$ se prolonge en une fonction continue sur $\mathbb R^2$.
Indication
Corrigé
Enoncé
Soit $f:\mathbb R\to\mathbb R$ une fonction de classe $C^1$. On définit $F:\mathbb R^2\to\mathbb R$ par $$F(x,y)=\left\{ \begin{array}{ll} \frac{f(x)-f(y)}{x-y}&\textrm{ si }x\neq y\\ f'(x)&\textrm{ sinon.} \end{array} \right. $$ Démontrer que $F$ est continue sur $\mathbb R^2$.
Indication
Corrigé
Exercice 44 - Application aux fonctions d'une variable [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $C\subset\mathbb R^2$ une partie convexe et $f:C\to\mathbb R$ une fonction continue.
  1. Démontrer que $f(C)$ est un intervalle.
  2. Soit $I$ un intervalle de $\mathbb R$ et $h:I\to\mathbb R$ une fonction continue et injective. Démontrer que $h$ est strictement monotone. On pourra utiliser la fonction $f(x,y)=h(x)-h(y)$.
Indication
Corrigé
Applications linéaires continues
Enoncé
Déterminer si l'application linéaire $T:(E,N_1)\to (F,N_2)$ est continue dans les cas suivants :
  1. $E=\mathcal C([0,1],\mathbb R)$ muni de $\|f\|_1=\int_0^1 |f(t)|dt$ et $T:(E,\|.\|_1)\to (E,\|.\|_1),\ f\mapsto fg$ où $g\in E$ est fixé.
  2. $E=\mathbb R[X]$ muni de $\|\sum_{k\geq 0}a_k X^k\|=\sum_{k\geq 0}|a_k|$ et $T:(E,\|.\|)\to (E,\|.\|)$, $P\mapsto P'$.
  3. $E=\mathbb R_n[X]$ muni de $\|\sum_{k=0}^n a_k X^k\|=\sum_{k=0}^n |a_k|$ et $T:(E,\|.\|)\to (E,\|.\|)$, $P\mapsto P'$.
  4. $E=\mathbb R[X]$ muni de $\|\sum_{k\geq 0}a_k X^k\|=\sum_{k\geq 0}k!|a_k|$ et $T:(E,\|.\|)\to (E,\|.\|)$, $P\mapsto P'$.
  5. $E=\mathcal C([0,1],\mathbb R)$ muni de $\|f\|_2=\left(\int_0^1 |f(t)|^2dt\right)^{1/2}$, $F=\mathcal C([0,1],\mathbb R)$ muni de $\|f\|_1=\int_0^1 |f(t)|dt$ et $T:(E,\|.\|_2)\to (F,\|.\|_1),\ f\mapsto fg$ où $g\in E$ est fixé.
Indication
Corrigé
Exercice 46 - Continue pour une norme, mais pas pour une autre [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $T:\mathbb R[X]\to\mathbb R[X]$ défini par $T(P)=P'$. Étudier la continuité de $T$ lorsque $\mathbb R[X]$ est muni de la norme
  1. $N_1(P)=\sum_{k=0}^{+\infty}|P^{(k)}(0)|$;
  2. $N_2(P)=\sup_{x\in[0,1]}|P(x)|.$
Indication
Corrigé
Exercice 47 - Applications linéaires sur les polynômes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathbb R[X]$, muni de la norme $\|\sum_i a_i X^i\|=\sum_i |a_i|$.
  1. Est-ce que l'application linéaire $\phi:(E,\|.\|)\to (E,\|.\|)$, $P(X)\mapsto P(X+1)$ est continue sur $E$?
  2. Est-ce que l'application linéaire $\psi:(E,\|.\|)\to (E,\|.\|)$, $P\mapsto AP$, où $A$ est un élément fixé de $E$, est continue sur $E$?
Indication
Corrigé
Enoncé
Soit $E=\mathcal C^{\infty}([0,1],\mathbb R)$. On considère l'opérateur de dérivation $D:E\to E$, $f\mapsto f'$. Montrer que, quelle que soit la norme $N$ dont on munit $E$, $D$ n'est jamais une application linéaire continue de $(E,N)$ dans $(E,N)$.
Indication
Corrigé
Exercice 49 - Norme d'une application linéaire continue [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé et $\mathcal L_c(E)$ l'ensemble des applications linéaires continues sur $E$. Pour $u\in\mathcal L_c(E)$, on pose $$\|u\|=\sup\{\|u(x)\|;\ \|x\|\leq 1\}.$$
  1. Démontrer que ceci définit une norme sur $\mathcal L_c(E)$.
  2. Démontrer que, pour tout $x\in E$ et tout $u\in\mathcal L_c(E)$, on a $$\|u(x)\|\leq \|u\|\times \|x\|.$$ En déduire que, pour tous $u,v\in \mathcal L_c(E)$, alors $\|u\circ v\|\leq \|u\|\times \|v\|.$
Indication
Corrigé
Enoncé
Soit $E$ un espace vectoriel normé et $u$ un endomorphisme de $E$ vérifiant, pour tout $x\in E$, $\|u(x)\|\leq \|x\|$. Pour tout $n\in\mathbb N$, on pose $$v_n=\frac 1{n+1}\sum_{k=0}^n u^k.$$
  1. Simplifer $v_n\circ(u-Id)$.
  2. Montrer que $\ker(u-Id)\cap\textrm{Im}(u-Id)=\{0\}$.
  3. On suppose désormais que $E$ est de dimension finie. Démontrer que $$\ker(u-Id)\oplus\textrm{Im}(u-Id)=E.$$
  4. Soit $p$ la projection sur $\ker(u-Id)$ parallèlement à $\textrm{Im}(u-Id)$. Démontrer que, pour tout $x\in E$, $v_n(x)\to p(x)$.
Indication
Corrigé
Norme des applications linéaires continues
Exercice 51 - Multiplication sur un espace de polynômes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathbb R[X]$ muni de la norme $$\left\|\sum_{k\geq 0}a_k X^k\right\|_\infty=\sup_{k\geq 0}|a_k|.$$ Soit $T:(E,\|\cdot\|_\infty)\to(E,\|\cdot\|_\infty)$ définie par $T(P)=XP.$ Démontrer que $T$ est continue et calculer sa norme.
Corrigé
Enoncé
Soit $E=\mathcal M_n(\mathbb R)$ muni de la norme $N$ définie pour tout $A=(a_{i,j})_{1\leq i,j\leq n}$ par $N(A)=\sup_{i=1}^n \big\{\sum_{j=1}^n |a_{i,j}|\}$ (on admet qu'il s'agit d'une norme). Démontrer que l'application trace $\textrm{Tr}:E\to\mathbb R$ est continue, et calculer sa norme.
Indication
Corrigé
Enoncé
Soit $E=\mathcal C([0,1])$ muni de $\|\cdot\|_\infty$ et $F=\mathcal C^1([0,1])$ muni de $\|f\|_F=\|f\|_\infty+\|f'\|_\infty$. Soit $T:E\to F$ défini par $Tf(x)=\int_0^x f(t)dt$. Démontrer que $T$ est continue et calculer sa norme.
Indication
Corrigé
Exercice 54 - Un opérateur sur les fonctions continues [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathcal C([0,1],\mathbb R)$ muni de $\|\cdot\|_\infty.$ Pour $f\in E,$ on définit $L(f):[0,1]\to\mathbb R,$ $L(f)(t)=\int_0^1 (t+u)f(u)du.$
  1. Justifier que $L$ est un endomorphisme de $E$.
  2. Démontrer que $L$ est continue et calculer $\|L\|_{\textrm{op}}$.
Indication
Corrigé
Exercice 55 - Normes (subordonnées) équivalentes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel normé et soit $\|\cdot\|_1$, $\|\cdot\|_2$ deux normes sur $E$. On note $\|\cdot\|_{\textrm{op},1}$ et $\|\cdot\|_{\textrm{op},2}$ les normes subordonnées sur $\mathcal L_c(E)$ associées à ces deux normes. Démontrer que si $\|\cdot\|_1$ et $\|\cdot\|_2$ sont équivalentes, alors $\|\cdot\|_{\textrm{op},1}$ et $\|\cdot\|_{\textrm{op},2}$ sont équivalentes.
Indication
Corrigé
Exercice 56 - Opérateur de différence [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des suites réelles bornées $(u_n)_{n\in\mathbb N}$ muni de $\|u\|_\infty=\sup_{n\in\mathbb N}|u_n|.$ On définit $T:(E,\|\cdot\|_\infty)\to (E,\|\cdot\|_\infty)$ par $Tu=v$ où, pour tout $n\in\mathbb N,$ $v_n=u_{n+1}-u_n.$ Justifier que $T$ est continue et calculer sa norme subordonnée.
Corrigé
Enoncé
Soit $E$ l'espace vectoriel des suites réelles bornées $(u_n)_{n\in\mathbb N}$ muni de $\|u\|_\infty=\sup_{n\in\mathbb N}|u_n|.$ On définit $T:(E,\|\cdot\|_\infty)\to (E,\|\cdot\|_\infty)$ par $Tu=v$ où, pour tout $n\in\mathbb N,$ $$v_n=\frac{1}{n+1}\sum_{k=0}^n u_{k}.$$ Justifier que $T$ est continue et calculer sa norme subordonnée.
Indication
Corrigé
Enoncé
Soit $A\in\mathcal M_{n}(\mathbb R).$ On note $C_1,\dots,C_n$ les colonnes de $A$ et $L_1,\dots,L_n$ les lignes de $A$.
  1. On munit $\mathbb R^n$ de la norme $\|\cdot\|_1.$ Démontrer que $\|A\|=\max_{j=1,\dots,n}\|C_j\|_1.$
  2. On munit $\mathbb R^n$ de la norme $\|\cdot\|_\infty.$ Démontrer que $\|A\|=\max_{i=1,\dots,p}\|L_i\|_1.$
Indication
Corrigé
Exercice 59 - Étude de l'opérateur d'intégration [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathcal C([0,1],\mathbb R)$ que l'on munit de la norme $$\|f\|_1=\int_0^1 |f(t)|dt,\ f\in E.$$ Soit $\phi$ l'endomorphisme de $E$ défini par $$\phi(f)(x)=\int_0^x f(t)dt.$$
  1. Justifier la terminologie : "$\phi$ est un endomorphisme de $E$."
  2. Démontrer que $\phi$ est continue.
  3. Pour $n\geq 0$, on considère $f_n$ l'élément de $E$ défini par $f_n(x)=ne^{-nx}$, $x\in[0,1]$. Calculer $\|f_n\|_1$ et $\|\phi(f_n)\|_1$.
  4. Déterminer $\|\phi\|_{\textrm{op}}$.
  5. $\phi$ est-elle injective? surjective?
  6. Quelles sont les valeurs propres de $\phi?$
Indication
Corrigé
Exercice 60 - Formes linéaires sur les polynômes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On munit $\mathbb R[X]$ de la norme suivante : $$\|\sum_{k=0}^n a_k X^k\|=\sup\{|a_k|;\ 0\leq k\leq n\}.$$ Pour $c\in \mathbb R$, on définit la forme linéaire $\phi_c:(\mathbb R[X],\|\cdot\|)\to(\mathbb R,|\cdot|),P\mapsto P(c)$. Pour quelles valeurs de $c$ la forme linéaire $\phi_c$ est-elle continue? Dans ce cas, déterminer la norme de $\phi_c$.
Indication
Corrigé
Enoncé
Soit $I=[a,b]$ un intervalle de $\mathbb R$. On munit $\mathcal C(I)$ de la norme $\|.\|_\infty$. On dit qu'une forme linéaire $u:\mathcal C(I)\to\mathbb R$ est positive si $u(f)\geq 0$ pour tout $f\in C(I)$ vérifiant $f(x)\geq 0$ si $x\in I$.
  1. Démontrer que, pour toute forme linéaire $u:\mathcal C(I)\to\mathbb R$ positive, $|u(f)|\leq u(|f|)$.
  2. Soit $e$ la fonction définie par $e(x)=1$ pour tout $x\in I$. Déduire de la question précédente que toute forme linéaire positive est continue, et calculer $\|u\|$ en fonction de $u(e)$.
Indication
Corrigé
Topologie des espaces vectoriels normés