$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Intégrales impropres

$\mathbb K$ désigne le corps $\mathbb R$ ou $\mathbb C$. On considère $f:[a,+\infty[\to\mathbb K$ continue par morceaux, et on souhaite donner un sens à $\int_a^{+\infty}f(t)dt$, ce qui est souvent utile en probabilité.
Intégrale impropre
  • Soit $f:[a,+\infty[\to \mathbb K$ continue par morceaux. On dit que l'intégrale $\int_a^{+\infty}f$ est convergente si la fonction $x\mapsto \int_a^x f(t)dt$ admet une limite finie lorsque $x$ tend vers $+\infty$. Dans ce cas, on note $\int_a^{+\infty} f(t)dt$ ou $\int_a^{+\infty}f$ cette limite.
  • Soit $f:[a,b[\to\mathbb K$ continue par morceaux avec $a,b\in\mathbb R$. On dit que l'intégrale $\int_a^b f$ est convergente si la fonction $x\mapsto \int_a^x f(t)dt$ admet une limite finie lorsque $x$ tend vers $b$. Dans ce cas, on note $\int_a^{b} f(t)dt$ ou $\int_a^{b}f$ cette limite.
  • Soit $f:]a,b[\to\mathbb K$ continue par morceaux avec $a,b\in\mathbb R\cup\{\pm\infty\}$. On dit que l'intégrale $\int_a^b f$ est convergente si, pour un (ou de façon équivalente pour tout) $c\in ]a,b[$, la fonction $x\mapsto \int_c^x f(t)dt$ admet une limite finie lorsque $x$ tend vers $b$ et la fonction $x\mapsto \int_x^c f(t)dt$ admet une limite finie lorsque $x$ tend vers $a$. Dans ce cas, on note $\int_a^{b} f(t)dt$ ou $\int_a^{b}f$ la somme de ces deux limites : $$\int_a^b f=\lim_{x\to a}\int_x^c f+\lim_{y\to b}\int_c^yf.$$
Lorsqu'on pose la question ``l'intégrale $\int_a^{+\infty}f(t)dt$ est-elle convergente'', on se pose la question de savoir si la fonction $x\mapsto \int_a^{x}f(t)dt$ admet une limite lorsque $x$ tend vers l'infini. La notation $\int_a^{+\infty}f(t)dt$ est utilisée de deux façons différentes : à la fois pour désigner le problème de convergence d'intégrale impropre et aussi, lorsque l'intégrale impropre converge, pour désigner la valeur de cette intégrale impropre.
Cas des fonctions positives
  • Théorème (cas des fonctions positives) : Si $f:[a,b[\to\mathbb R$ est positive, alors $\int_a^{b}f$ converge si et seulement si la fonction $x\mapsto \int_a^x f(t)dt$ est majorée sur $[a,b[$.
  • Pour prouver la convergence ou la divergence d'une intégrale impropre, on va souvent se ramener à des fonctions classiques, grâce aux théorèmes suivants.
    Théorème de majoration Soit $I=[a,b[$ et $f,g:I\to\mathbb R$ continues par morceaux telles que $0\leq f\leq g$. Alors
    • si $\int_a^b g(t)dt$ converge, alors $\int_a^b f(t)dt$ converge;
    • si $\int_a^b f(t)dt$ diverge, alors $\int_a^b g(t)dt$ diverge.
  • Corollaire Soit $I=[a,b[$ et $f,g:I\to\mathbb R$ continues par morceaux, positives ou nulles, telles que $f\sim_b g$. Alors $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ sont de même nature.
  • Théorème (intégrales de Riemann) :
    • L'intégrale $\int_1^{+\infty}\frac{dx}{x^\alpha}$ est convergente si et seulement si $\alpha>1$.
    • L'intégrale $\int_a^b \frac{dx}{(x-a)^\alpha}$ est convergente si et seulement si $\alpha<1$.
Fonctions intégrables
  • On dit que $f$ est intégrable sur $I=[a,b[$ ou que $\int_If$ est absolument convergente si $\int_I|f|$ converge.
  • Théorème : Si $f$ est intégrable sur $I$, alors $\int_I f(t)dt$ converge.
  • Corollaire : Soit $I=[a,b[$ et $f,g:I\to\mathbb R$ continues par morceaux avec $g\geq 0$ et $f(t)=_b o\big(g(t))$. Si $\int_a^b g(t)dt$ converge, alors $f$ est intégrable sur $[a,b]$. En particulier, $\int_a^b f(t)dt$ converge.
Intégration par parties et changement de variables
  • Théorème (changement de variables) : Soit $f$ une fonction continue sur $]a,b[$ et $\varphi :]\alpha,\beta\to ]a,b[$ bijective, strictement croissante et de classe $\mathcal C^1$, les intégrales $\int_a^b f (t)dt$ et $\int_\alpha^\beta f\circ\varphi(u)\varphi'(u)du$ sont de même nature et égales en cas de convergence.
  • Théorème (intégration par parties) : Soient $f,g:]a,b[\to\mathbb R$ deux fonctions de classe $\mathcal C^1$ telles que $\lim_{t\to a}f(t)g(t)$ et $\lim_{t\to b}f(t)g(t)$ existent. Alors les intégrales $\int_a^b f(t)g'(t)dt$ et $\int_a^b f'(t)g(t)dt$ sont de même nature. Lorsqu'elles sont convergentes, on a $$\int_a^b f'(t)g(t)dt=f(b)g(b)-f(a)g(a)-\int_a^b f(t)g'(t)dt.$$