$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Nombres complexes : différentes écritures

Forme algébrique
Exercice 1 - Partie réelle, partie imaginaire, conjugué [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Donner la partie réelle, la partie imaginaire et le conjugué des nombres complexes suivants : $$ \begin{array}{lllll} z_1=-2i+5&\quad&z_2=15&\quad&z_3=3i\\ z_4=i(2+3i) \end{array}$$
Indication
Corrigé
Exercice 2 - Forme algébrique - Somme et produits [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Mettre sous forme algébrique les nombres complexes suivants : $$\begin{array}{lll} \mathbf{1.}\ z_1=(2+5i)+(i+3)&\quad \mathbf{2.}\ z_2=4(-2+3i)+3(-5-8i)&\quad\mathbf{3.}\ z_3=(2-i)(3+8i)\\ \displaystyle\mathbf{4.}\ z_4=(1-i)\overline{(1+i)}&\quad\mathbf{5.}\ z_5=i(1-3i)^2& \quad\mathbf{6.}\ z_6=(1+i)^3 \end{array} $$ Attention! Il y a un symbole de conjugaison dans $z_4$.
Indication
Corrigé
Exercice 3 - Forme algébrique - quotients [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Mettre sous forme algébrique les nombres complexes suivants : $$\begin{array}{lll} \mathbf{1.}\ z_1=\frac1{1+i}&\quad{\mathbf 2.}\ z_2=\frac{-4}{1+i\sqrt 3}& \quad\mathbf{3.}\ z_3=\frac{1-2i}{3+i}\\ \displaystyle{\mathbf 4.}\ z_4=\frac{(3+5i)^2}{1-2i}&\displaystyle\quad{\mathbf 5.}\ z_5=\left(\frac{1+i}{2-i}\right)^2+\frac{3+6i}{3-4i}\\ \end{array} $$
Indication
Corrigé
Exercice 4 - Avec la formule du binôme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Simplifier les nombres complexes suivants : $(1+i)^5$, $(1-i)^4$.
Indication
Corrigé
Exercice 5 - Calculs avec des conjugués [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $z$ un nombre complexe non nul, de forme algébrique $z=x+iy$. Donner la forme algébrique des nombres complexes suivants : $$\begin{array}{lll} \mathbf{1.}\ z_1=\frac{\overline z}{z}&\quad\mathbf{2.}\ z_2=\frac{iz}{\overline z}. \end{array}$$
Indication
Corrigé
Exercice 6 - Équations du premier degré [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre les équations suivantes, d'inconnue $z\in\mathbb C$ : $$ \begin{array}{lll} {\mathbf 1.}\ z+2i=iz-1&\quad&{\mathbf 2.}\ (3+2i)(z-1)=i\\ {\mathbf 3.}\ (2-i)z+1=(3+2i)z-i&\quad&{\mathbf 4.}\ (4-2i)z^2=(1+5i)z. \end{array}$$ On écrira les solutions sous forme algébrique.
Indication
Corrigé
Exercice 7 - Équations avec des conjuguées. [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre les équations suivantes : $$ \begin{array}{lll} \displaystyle{\mathbf 1.}\ 2z+i=\overline z+1&\displaystyle{\mathbf 2.}\ 2z+\overline z=2+3i&\displaystyle{\mathbf 3.}\ 2z+2\overline z=2+3i. \end{array}$$
Indication
Corrigé
Enoncé
Résoudre les systèmes suivants, d'inconnues les nombres complexes $z_1$ et $z_2$ :
  1. $$\left\{ \begin{array}{rcl} 2z_1-z_2&=&i\\ -2z_1+3iz_2&=&-17 \end{array}\right.$$
  2. $$\left\{ \begin{array}{rcl} 3iz_1+iz_2&=&i+7\\ iz_1+2z_2&=&11i \end{array}\right.$$
On donnera les résultats sous forme algébrique.
Indication
Corrigé
Enoncé
On appelle ensemble des entiers de Gauss noté $\mathbb Z[i]$ l'ensemble des nombres complexes qui s'écrivent $a+ib$, avec $a$ et $b\in\mathbb Z.$
  1. Soit $z$ et $z'$ deux entiers de Gauss. Démontrer que $z-z'$ et $zz'$ sont des entiers de Gauss.
  2. Pour tout nombre complexe $z$, on note $N(z)=z\bar z.$
    1. Démontrer que, pour tous nombres complexes $z$ et $z'$, $N(z)N(z')=N(zz').$
    2. Démontrer que, pour tout entier de Gauss $z$, $N(z)$ est un entier naturel.
    3. Soit $z$ un entier de Gauss non nul tel que $1/z$ est un entier de Gauss. Démontrer que $N(z)=1$.
    4. Déterminer l'ensemble des entiers de Gauss tels que $1/z$ est un entier de Gauss.
Indication
Corrigé
Exercice 10 - Déterminer des fonctions complexes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On se propose dans cet exercice de déterminer toutes les fonctions $f:\mathbb C\to\mathbb C$ vérifiant les trois propriétés suivantes :
  1. $\forall z\in\mathbb R$, $f(z)=z$.
  2. $\forall (z,z')\in\mathbb C^2$, $f(z+z')=f(z)+f(z')$.
  3. $\forall (z,z')\in\mathbb C^2$, $f(z\times z')=f(z)\times f(z')$.
  1. Vérifier que les fonctions définies par $f(z)=z$ et $f(z)=\bar z$ sont solutions du problème.
  2. Réciproquement soit $f$ une fonction du problème.
    1. Démontrer que $f(i)=i$ ou $f(i)=-i$.
    2. On suppose que $f(i)=i$. Démontrer que, pour tout $z\in\mathbb C$, $f(z)=z$.
    3. On suppose que $f(i)=-i$. Démontrer que, pour tout $z\in\mathbb C$, $f(z)=\bar z$.
  3. Qu'a-t-on démontré dans cet exercice?
Indication
Corrigé
Module, argument et forme trigonométrique
Enoncé
Mettre sous forme exponentielle les nombres complexes suivants : $$\begin{array}{lll} {\mathbf 1.}\ z_1=1+i\sqrt 3&\quad\mathbf 2.\ z_2=9i&\quad{\mathbf 3.}\ z_3=-3\\ \displaystyle{\mathbf 4.}\ z_4=\frac{-i\sqrt 2}{1+i}&\displaystyle \quad\mathbf{5.}\ z_5=\frac{(1+i\sqrt 3)^3}{(1-i)^5}&\quad{\mathbf 6.}\ z_6=\sin x+i\cos x. \end{array} $$
Indication
Corrigé
Enoncé
On pose $z_1=4e^{i\frac{\pi}{4}},\;z_2=3ie^{i\frac{\pi}{6}},\;z_3=-2e^{i\frac{2\pi}{3}}$. Écrire sous forme exponentielle les nombres complexes : $z_1$, $z_2$, $z_3$, $z_1z_2$, $\frac{z_1z_2}{z_3}$.
Corrigé
Exercice 13 - Module, argument et opérations [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $z=re^{i\theta}$ avec $r>0$ et $\theta\in\mathbb R$. Soit $n$ un entier naturel non nul. Donner le module et un argument des nombres complexes suivants : $$z^2,\ \overline{z},\ \frac 1z,\ -z,\ z^n.$$
Indication
Corrigé
Exercice 14 - Les deux à la fois - avec application [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère les nombres complexes suivants : $$z_1=1+i\sqrt 3,\ z_2=1+i\textrm{ et }z_3=\frac{z_1}{z_2}.$$
  1. Écrire $z_3$ sous forme algébrique.
  2. Écrire $z_3$ sous forme trigonométrique.
  3. En déduire les valeurs exactes de $\cos\frac\pi{12}$ et $\sin\frac\pi{12}$.
Indication
Corrigé
Exercice 15 - Forme algébrique, le retour [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer la forme algébrique des nombres complexes suivants : $$\mathbf 1. z_1=(2+2i)^6\quad \mathbf 2. z_2=\left(\frac{1+i\sqrt 3}{1-i}\right)^{20}\quad\mathbf 3. z_3=\frac{(1+i)^{2000}}{(i-\sqrt 3)^{1000}}.$$
Indication
Corrigé
Exercice 16 - Identité du parallélogramme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $z_1$ et $z_2$ deux nombres complexes. Démontrer que $$|z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2).$$
Indication
Corrigé
Enoncé
Résoudre l'équation $e^z=3\sqrt 3-3i$.
Indication
Corrigé
Enoncé
Trouver les entiers $n\in\mathbb N$ tels que $(1+i\sqrt 3)^n$ soit un réel positif.
Indication
Corrigé
Enoncé
Donner l'écriture exponentielle du nombre complexe suivant : \begin{equation*} \frac{1-e^{i\frac{\pi}{3}}}{1+e^{i\frac{\pi}{3}}}. \end{equation*}
Indication
Corrigé
Exercice 20 - Forme exponentielle et formule d'Euler [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $a,b\in]0,\pi[$. Écrire sous forme exponentielle les nombres complexes suivants : $$\mathbf 1.\ z_1=1+e^{ia}\quad \mathbf 2.\ z_2=1-e^{ia}\quad \mathbf 3.\ z_3=e^{ia}+e^{ib}\quad \mathbf 4. z_4=\frac{1+e^{ia}}{1+e^{ib}}.$$
Indication
Corrigé
Exercice 21 - Transformation de Cayley [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $z$ et $z'$ deux nombres complexes de module 1 tels que $zz'\neq -1$. Démontrer que $\frac{z+z'}{1+zz'}$ est réel, et préciser son module.
Indication
Corrigé
Exercice 22 - Une inégalité sur les modules [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Soit $Z$ un nombre complexe. Démontrer que $$1+|Z|^2+2\Re e(Z)\geq 0.$$
  2. Soit $z$ et $w$ deux nombres complexes. Démontrer que l'on a $$|z-w|^2\leq (1+|z|^2)(1+|w|^2).$$
Indication
Corrigé
Enoncé
Déterminer les nombres complexes non nuls $z$ tels que $z$, $\frac 1z$ et $1-z$ aient le même module.
Indication
Corrigé
Enoncé
Soit $z$ un nombre complexe, $z\neq 1$. Démontrer que : $$|z|=1\iff \frac{1+z}{1-z}\in i\mathbb R.$$
Indication
Corrigé
Enoncé
  1. Quelle est la forme algébrique de $(1+i)(1+2i)(1+3i)$?
  2. En déduire la valeur de $\arctan(1)+\arctan(2)+\arctan(3)$.
Indication
Corrigé
Exercice 26 - Homographie du cercle unité [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $U=\left\{z\in\mathbb C:\ |z|=1\right\}$ le cercle unité et soit $a\notin U$. Démontrer que $f_a(z)=\frac{z+a}{1+\bar a z}$ définit une bijection de $U$ sur lui-même et donner l'expression de $f_a^{-1}$.
Indication
Corrigé
Exercice 27 - Module de la somme et de la différence [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $z=\rho e^{i\theta}$ et $z'=\rho'e^{i\theta'}$ deux nombres complexes non nuls. Démontrer que $$|z+z'|=|z-z'|\Longleftrightarrow{\theta'=\theta+\frac{\pi}{2}[\pi]}.$$
Indication
Corrigé
Exercice 28 - Un ensemble de complexes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On rappelle que $j=e^{2i\pi/3}.$ On note $E=\{z\in\mathbb C:\ \exists(a,b)\in\mathbb Z^2,\ z=a+jb\}.$
  1. Soit $z=a+jb\in E$, avec $(a,b)\in\mathbb Z^2.$ Montrer que $|z|=1$ si et seulement si $$(2a-b)^2+3b^2=4.$$
  2. En déduire explicitement tous les éléments de $U=\{z\in E:\ |z|=1\}$ en fonction de $1$, de $-1$, de $j$ et $-j.$
Indication
Corrigé
Exercice 29 - Entiers somme de deux carrés [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On dit qu'un entier naturel $N$ est somme de deux carrés s'il existe deux entiers naturels $a$ et $b$ de sorte que $N=a^2+b^2$.
  1. Écrire un algorithme permettant de déterminer si un entier naturel $N$ est somme de deux carrés.
  2. On souhaite prouver que, si $N_1$ et $N_2$ sont sommes de deux carrés, alors leur produit $N_1N_2$ est aussi somme de deux carrés. Pour cela, on écrit $N_1=a^2+b^2$ et $N_2=c^2+d^2$, et on introduit $z_1=a+ib$, $z_2=c+id$. Comment écrire $N_1$ et $N_2$ en fonction de $z_1$ et $z_2$?
  3. En déduire que $N_1N_2$ est somme de deux carrés.
  4. Démontrer que si $N$ est somme de deux carrés, alors pour tout entier $p\geq 1$, $N^p$ est somme de deux carrés.
Indication
Corrigé
Exercice 30 - Automorphisme du disque [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $a$ un complexe de module $|a|<1$.
  1. Démontrer que, pour tout nombre complexe $z$ tel que $1-\bar a z\neq 0$, $$1-\left|\frac{z-a}{1-\bar{a}z}\right|^2 = \frac{(1-|a|^2)(1-|z|^2)}{|1-\bar a z|^2}.$$
  2. Déterminer les nombres complexes $z$ vérifiant $\displaystyle \left|\frac{z-a}{1-\bar{a}z}\right|\leq 1.$
Indication
Corrigé
Exercice 31 - Inégalité triangulaire itérée, et cas d'égalité [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Justifier que, pour tout nombre complexe $z$, on a $\Re e(z)\leq |z|$. Dans quel cas a-t-on égalité?
  2. Démontrer que pour tout couple $(z_1,z_2)$ de nombres complexes, on a $|z_1+z_2|\leq |z_1|+|z_2|$.
  3. On suppose de plus que $z_1$ et $z_2$ sont des nombres complexes non nuls. Justifier que l'inégalité précédente est une égalité si et seulement s'il existe un réel positif $\lambda$ tel que $z_2=\lambda z_1$.
  4. Démontrer que pour tout $n$-uplet $(z_1,\dots,z_n)$ de nombres complexes, on a $$|z_1+\cdots+z_n|\leq |z_1|+\cdots+|z_n|.$$
  5. Démontrer que si $z_1,\dots,z_n$ sont tous non nuls, alors l'inégalité précédente est une égalité si et seulement si il existe des réels positifs $\lambda_1,\dots,\lambda_n$ tels que, pour tout $k=1,\dots,n$, on a $z_k=\lambda_k z_1$.
Indication
Corrigé
Exercice 32 - Égalité dans l'inégalité triangulaire [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $z_1,\dots,z_n$ des nombres complexes tous non nuls. Donner une condition nécessaire et suffisante pour que $$|z_1+\dots+z_n|=|z_1|+\dots+|z_n|.$$
Indication
Corrigé
Consulter aussi