Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 06-10-2019 10:03:35

rawad nahle
Invité

exercice type bac : deux asymptote oblique pour la meme courbe :

bonjour tout le monde,
comment allez vous ?
je trouve quelque difficultés dans ce probléme et je n'arrive pas a le terminer
Esque quelqu'un peut le faire ?

Soit m un réel er fm la fonction définie par fm(x)=racine(x²+2mx-1).
On note Cm la courbe représentative de fm dans un repère du plan.
1)Prouver que la fonction fm est définie pour des valeur de x dont la valeur absolue est suffisamment grande.
2) Déterminer la limite de fm en +00 et -00 (plus infini et moins infini)
3) etablir le tableaux de variation de fm sur son ensemble de définition
4)Démontrer que la droite Dm d'équation y = x+m est une asymptote de Cm en +00
5)Démontrer que la droite D'm d'équation y = -x-m est une asymptote de Cm en -00
6)Etudier la position de la courbe Cm par rapport  à Dm et à D'm


merci beaucoup

#2 06-10-2019 10:22:58

Maenwe
Membre
Inscription : 06-09-2019
Messages : 149

Re : exercice type bac : deux asymptote oblique pour la meme courbe :

Bonjour,

Tu as des difficultés dans cet exercice certes, mais lesquels ? (qu'est ce qui te bloque dans l'énoncé ? Une formulation d'une des questions ? Aucune idée de comment aborder les questions ? ...)

Pour la 1ère question, normalement tu connais le comportement des fonctions de cette forme $f(x) = ax^{2} + bx + c$, et bien tu utilises ces connaissances, et tu vas devoir aussi utiliser le théorème de composition des limites que tu as vu normalement qui s'énonce ainsi :
Soit $h$ et $g$ deux fonctions, si $h\circ g$ est définie et que : $\lim\limits_{x \to a} g(x) = l_{1}$ et $\lim\limits_{x \to l_{1}} h(x) = l_{2}$, alors $\lim\limits_{x \to a} h \circ g(x) = l_{2}$ (et ça marche aussi si $a=\pm \infty$).

Dernière modification par Maenwe (06-10-2019 10:25:54)

Hors ligne

#3 06-10-2019 11:26:36

rawad nahle
Invité

Re : exercice type bac : deux asymptote oblique pour la meme courbe :

bonjour de nouveau,

pour la premiere question : je doit trouver les racines de x (x' et x'') en fonction de m ?(faire  delta = 4m^2+4 )
ou je trouve les valeur de m et m' ?
quelle sont les étapes que je dois faire ?


merci

#4 06-10-2019 13:12:08

Maenwe
Membre
Inscription : 06-09-2019
Messages : 149

Re : exercice type bac : deux asymptote oblique pour la meme courbe :

Bonjour,

tu peux les chercher mais je ne crois pas que ce sera très utile dans la question 1), je faisais plutôt allusion aux limites en $+\infty$ et $-\infty$, les as tu vu dans tes précédents cours ?

NB : Lorsque l'on parle des racines d'un polynôme $P$ (qui ici est égale à $P(x) = x^{2} + 2mx - 1$), on ne dit pas chercher les racines de x mais chercher les racines de P, car si on utilise ta formulation, sachant que $Q(x) = x$ est aussi un polynôme, les racines de x fait référence à 0 car la seule racine de Q est 0.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
cinquante trois moins trente
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums