Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 28-07-2019 07:15:09

lekoue
Membre
Inscription : 21-09-2016
Messages : 26

Restriction de la mésure de Lebesgue de $\mathbb{R}^3$ sur la sphère.

Bonjour à tous;

Soit la sphère $\mathbb{S}^2 = \{(x,y,z)\in \mathbb{R}^3: x^2+y^2+z^2 = 1\}$ de dimension $2$.

Lorsque nous considérons les coordonnées sphèriques $(x,y,z) = (\cos(\theta)\cos(\phi),\cos(\theta)\sin(\phi),\sin(\theta))$ avec bien-sûr
$(\theta,\phi)\in(-\frac{\pi}{2},\frac{\pi}{2})\times(0,2\pi)$, Quelle est la restriction de la mesure de Lebesgue $d\sigma$ de $\mathbb{R}^3$ sur la sphère $\mathbb{S}^2$ svp?


Es ce que c'est $d\sigma = \cos(\theta)d\theta d\phi$?

Autrement dit es ce que par exemple l'espace des fonctions mesurables et de carré intégrable sur $\mathbb{S}^2$ est défini comme ci-dessous?

$$L^2(\mathbb{S}^2,d\sigma,\mathbb{R}) = \left\{u:\mathbb{S}^2\rightarrow\mathbb{R},\mbox{ mesurable }: \int_{\mathbb{S}^2}|u(\theta,\phi)|^2\cos(\theta)d\theta d\phi<\infty\right\}$$

MERCI!

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante trois moins cinquante sept
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums