Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 15-04-2019 11:04:41

VolTesla
Invité

Flocon de Von Koch

Bonjour,
je bloque sur un exo qui parle du fameux flocon de von koch, voici l'énoncé ;
On considère un triangle équilatéral P0 de côté 1. Chaque côté est ensuite divisé en 3 parties égales et on construit sur le segment du milieu de chacun des côtés un nouveau triangle équilatéral à l'éxterieur de P0. On obtient ainsi le polygone P1. En procésant de la même façon avec P1, on obtient P2, puis en réitérant le processus, on obtient le polygone Pn.
Pour Pn, on note ;
- Cn le nombre de côtés de Pn,
- Ln la longueur de chaque côté,
- Qn son périmètre,
- An son aire

1) Calculer C0 C1 C2, L0 L1 L2, Q0, Q1, Q2 et A0 A1 A2.
La j'ai réussi sauf pour A1 et A2, sachant que pour A0 je trouve sqrt(3)/4
Je vois que sur P1 il y a l'aire de P0 + les aires des trois petits triangles de côté 1/3 mais comment le synthétiser ?

2) et 3)
Exprimer Cn+1 en fonction de Cn ---> Cn+1= 4Cn. En déduire l'expression de Cn ---> ??
Exprimer Ln +1 en fonction de Ln ---> Ln+1 = 1/3 Ln. En déduire l'expression de Ln ---> ??

4) déduire l'expression de Qn en fonction de n ---> Je vois que Qn = Ln x Cn mais en fonction  de n ??
Sa nature ---> géométrique de raison ?? et de premier terme 3
Conjecturer sur la limite de cette suite ---> si q > 1, la limite est +inf , si 0<q<1, lim =0

5) Exprimer An+1 en fonction de An et de n . Déduire l'expression de An en fonction de n
PISTE : Calculer de 2 façons différentes la somme (An-An+1) + (An-1-An-2) + ... + (A1-A0)
La j'aurai besoin d'aide car je ne comprend pas...
Merci :)

#2 18-04-2019 20:16:45

D_john
Invité

Re : Flocon de Von Koch

Salut,

VolTesla a écrit :

Bonjour,
1) Calculer C0 C1 C2, L0 L1 L2, Q0, Q1, Q2 et A0 A1 A2.
La j'ai réussi sauf pour A1 et A2, sachant que pour A0 je trouve sqrt(3)/4
Je vois que sur P1 il y a l'aire de P0 + les aires des trois petits triangles de côté 1/3 mais comment le synthétiser ?

Si tu calcules l'aire de l'un des petits triangles ajoutés au triangle initial tu dois trouver Ao/9
Or il y a 3 côtés donc les aires de 3 petits triangles à ajouter soit :
A1 = Ao + Ao/3

De même pour A2, il y a 12 côtés sur lesquels tu dois ajouter des petits petits triangles dont l'aire est Ao/81. D'où :
A2 = A1 + 12 Ao/81 = ...

Pour 2 et 3
Co = 3
C1 = 4*3                            (C1 = 3 multiplié 1 fois par 4)
C2 = 4*4*3                        (C2 = 3 multiplié 2 fois par 4)
...
Cn = (4*4*4*...*4)*3         (Cn = 3 multiplié n fois par 4)

Compliqué ?

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt cinq plus vingt cinq
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums