Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 16-10-2018 16:59:49

Guillaume670
Membre
Inscription : 16-10-2018
Messages : 6

Trigonométrie

Bonjour à tous,

Je m'adresse au forum car je me trouve face à une difficulté pour déduire une formule mathématique que je souhaite intégrer dans un excel.
J'ai cherché quelques heures, en vain...
Mon but est de pouvoir déduire l'angle Alpha en fonction de A, B, R et N (correspondant au nombre de boucles en position haute). Ci-dessous,la capture d'écran du croquis.
1539709058-capture.png
Sauriez-vous m'aider ?
D'avance, je vous en remercie,

Guillaume S

Hors ligne

#2 16-10-2018 18:10:54

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 495

Re : Trigonométrie

Bonsoir,

Sous réserve d'avoir compris où était très précisément ton angle alpha, j'ai ta formule.
Je l'ai testée avec les mesures de ton dessin et je trouve alpha=82.09° et non 82,16°
Peux-tu préciser ?
Merci
181016092714628297.png
Je pense que ce n'est pas cela (un peu trop simple) mais ton dessin n'est pas clair...
Des mesures manqueraient-elles ?

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#3 17-10-2018 06:27:26

Guillaume670
Membre
Inscription : 16-10-2018
Messages : 6

Re : Trigonométrie

Bonjour Yoshi, et merci pour ta réponse rapide.

En effet, mon dessin n'est probablement pas suffisamment clair.
Tous les arcs de cercle sont tangents avec les droites. Si nous faisons varier l'une des variables, l'angle d'ouverture de cet arc de cercle varie également. C'est ce que je cherche à trouver.

Guillaume

Hors ligne

#4 17-10-2018 08:09:09

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 495

Re : Trigonométrie

Bonjour,

Tous les arcs de cercle sont tangents avec les droites

Ok ! Mais lesquelles ?
181017093949884541.png
Les points de tangence sont les points que j'ai mis en orange.
C'est la droite que j'ai mise en vert qui est tangente.
Le segment bleu passe le centre de l'arc de cercle et le point de tangence.
L'angle alpha est l'angle que fait l'axe de symétrie de la boucle  (en rouge) avec la tangente (verte).
L'endroit que j'ai marqué avec un "?" ne t'intéresse pas.
C'est bien ça ?
181017104145527493.png
La position verticale des centres O des arcs est B-R depuis le bas, mais H, lui n'est pas un centre...
Tu fixes arbitrairement le nombre de boucles et c'est ce nombre qui va déterminer la position des centres ?

Qu'est-ce qui te garantit que dans la longueur A choisie, tu pourras avoir le nombre de boucle voulu sans perte à droite (si tu commences à gauche) ? Tu choisis une longueur A, puis un nombre de boucles et c'est cela qui décide ?
Si je devais reproduire ce dessin pour 4 boucles, je ne saurais pas par où commencer et ça c'est rédhibitoire pour amorcer les calculs : je pense que tu ferais mieux d'expliquer ta construction de A à Z...

Je ne suis pas surpris que tu n'aies rien trouvé...
Moi maintenant, je ne me prononce plus tant que je ne suis pas capable de refaire une construction donnée...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#5 17-10-2018 08:54:48

Guillaume670
Membre
Inscription : 16-10-2018
Messages : 6

Re : Trigonométrie

D'accord Yoshi,

Voici plus d'éléments.

Dans la capture ci-dessous, tu retourveras toutes les contraintes appliquées aux "méandres".
1539765610-capture4.png

Je fixerais le nombre de boucle en fonction du besoin. Il faudra en aucun cas que le boucles viennent en contact.
Sur le croquis ci-dessous, tu retrouveras mon "méandre" en violet. Le trait de construction vert passe par toutes les extrémités de cercle. Les deux traits de construction orange sont de longueur égale.
1539765609-capture5.png

Voici maintenant un dernier visuel focalisé sur la boucle cotée.
1539766373-capture6.png

Voilà, j'espère que j'ai réussi à éclircir les points obscures.

Guillaume

Hors ligne

#6 17-10-2018 10:15:28

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 495

Re : Trigonométrie

Bonjour,

C'est intéressant...
Mais hélas, je suis incapable de reproduire que ce soit tes 4 boucles ou les 3...
Tu pars d'un rectangle vierge de A par B...
Tu décides du nombre de boucles...
Et après, par où commences-tu pour construite tes méandres ? Et la suite des constructions ? C'est de cela dont j(ai besoin...
en outre ton angle de 3,02°, il est variable lui aussi, non ? là il vaut ça dans la configuration donnée...


Arx Tarpeia Capitoli proxima...

Hors ligne

#7 17-10-2018 13:01:35

Guillaume670
Membre
Inscription : 16-10-2018
Messages : 6

Re : Trigonométrie

Yoshi,

Tous les arcs de cercle ont un rayon équivalent et tous les arcs de cercle sont tangents avec, soit le haut, soir le bas de mon retangle.
Je pars du point 0 (bas gauche du rectangle) et je tire ma première droite. Je réalise un premier arc de cercle tangent avec le haut de mon rectangle et avec la droite que je viens de tracer. Ensuite, je redescends avec ma droite inclinée qui est tengente avec mon premier arc de cercle, et réalise mon deuxième arc de cercle, toujours tengent avec la droite, mais aussi avec le bas de mon rectangle. Je retire une droite montante avant de tracer l'arc de cercle suivant et ainsi de suite jusqu'au bout. Toutes mes droites tracées à l'intérieur du rectangle sont de longueur égale (ormis la première et la dernière qui sont égales entre elles).

Quand tu traces une esquisse sur un logiciel de dessin de type solidebidule, l'esquisse est entièrement contrainte et figée par les variable données plus haut.

Guillaume
Pour ce qui concerne l'angle de 3,02 il s'agit de l'angle Pi - alpha ou 90° - alpha.

Hors ligne

#8 17-10-2018 16:04:58

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 495

Re : Trigonométrie

Salut

Bon donc, c'est une construction pifométrique au départ : ta droite de départ étant parfaitement aléatoire, tu ne peux donc avoir une idée claire du nombre de "sinusoïdes" que tu vas pourvoir caser, ni même aucune certitude que le rayon du demi-cercle (qui deviendra un arc de cercle) permettra  de caser un nombre entier de spires dans la longueur du rectangle, ni donc si tu ne vas pas être obligé de modifier le rayon ou ladite longueur...
Bin, ma foi, je vais essayer de tester ce flou artistique et de voir si pour commencer et tracer la droite appelée à être ta première tangente est une idée qui tient la route ou pas...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#9 17-10-2018 16:19:23

Guillaume670
Membre
Inscription : 16-10-2018
Messages : 6

Re : Trigonométrie

Re salut,

Sauf ton respect Yoshi, il n'y a rien de pifométrique au contraire. Ca se tient parfaitement.
Sur mes 4 variables, le plan s'adpate et il doit être possible de calculer cet angle ... en réalité, c'est le developpé du méandre que je cherche à calculer ... mais une fois l'angle calculé, ce sera "easy".

Hors ligne

#10 17-10-2018 18:54:37

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 495

Re : Trigonométrie

Re,

Ah bon ?
Alors je n'ai rien compris à ton plan de construction...
"Sauf ton respect", Guillaume,, ce 1er tracé, tel que tu le décris ci-dessous est bien aléatoire, non ?

Guillaume a écrit :

Je pars du point 0 (bas gauche du rectangle) et je tire ma première droite.

Non ? Alors selon quel critère la trace-tu ?
A ce stade, comment peux-tu savoir, si le rayon que tu vas choisir te permettra d'obtenir le nombre de spires exact voulu, sans perte, dans la Longueur A (que tu auras prédéterminée) de ton rectangle, mais la largeur B (ou la hauteur) également prédéterminée dudit rectangle influera aussi sur le nombre de spires.
Je comptais :
* Choisir A et B, R et N  par exemple 800 cm, 600 cm,  32 cm et 8  spires...
* Puis  tracer selon un angle choisi au hasard la première tangente.
* Puis tracer l'arc de cercle tangent.
* Piis tracer la 2e tangente qui sera symétrique (symétrie axiale) de la première ...
and so on ...
(Je ne parle pas dans le vide, je l'ai fait !)
Maintenant, question que je te pose depuis un moment : peux-tu me certifier que tu auras bien 8 spires réparties sur 800 cm, sans perte, i.e que le bas de la dernière tangente arrivera pile dans le coin inférieur droit du rectangle, avec les données fixées avec une première tangente que je trace au hasard ?

A partir du moment où ta première tangente est tracée, A, B et R fixés, d'accord la construction est rigoureuse...
C'est le N qui m'interpelle...
Pour moi,
- je ne peux pas le décider à l'avance,
- je doute fort qu'avec mes choix ci-dessus la dernière tangente arrive pile dans le coin inférieur droit du rectangle.

@+

[EDIT] Je ne vois pas pourquoi, je continuerais à me casser la tête, alors que d'autres réfléchissent ailleurs et sont plus avancés...
Je me doutais d'un truc pareil :
https://www.maths-forum.com/enigmes/tri … 98851.html

Personnellement, je ne supporte pas ce genre de procédé (crossposting) et même si ça ne dérange pas certains, j'en connais beaucoup qui pensent comme moi

Dernière modification par yoshi (17-10-2018 19:05:22)


Arx Tarpeia Capitoli proxima...

Hors ligne

#11 18-10-2018 07:36:23

Guillaume670
Membre
Inscription : 16-10-2018
Messages : 6

Re : Trigonométrie

Oui, effectivement j'ai posté sur 2 forums. Je ne pensais pas que c'était une pratique controversée... je ne suis pas coutumier des forums, mais j'en prends bonne note pour le futur.
Merci de t'être penché sur le sujet, même si tu n'as pas saisi la problématique.

A+ Guillaume

Hors ligne

#12 18-10-2018 09:12:17

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 495

Re : Trigonométrie

Re,

Merci de t'être penché sur le sujet, même si tu n'as pas saisi la problématique.

Sans le vouloir j'espère, c'est presque injurieux...
Oh, mais si j'ai compris la problématique (je ne suis pas aussi bouché que tu as l'air de le croire), et les réactions que j'ai lues là-bas, m'ont conforté dans l'idée :
- qu'il fallait bien commencer par fixer un angle $\beta$ entre ta première tangente et le côté gauche du rectangle, la "contrainte" (selon tes propres mots) 3,02° de ton exemple n'était pas au bon endroit : la "contrainte" c'est mon angle $beta$ et par symétrie on retrouve cet angle entre chaque tangente et la parallèle, à l'axe de symétrie, passant par chaque point de tangence...
- que je n'ai pas besoin d'équations du 3e degré pour arriver au bout (je vais d'ailleurs essayer en guise de défi personnel...)
Ton angle [tex]\alpha[/tex] n'est alors rien d'autre que $90-\beta$.

Moi, je voulais savoir, si, toi, tu pouvais construire tes "sinusoïdes", sans perte d'espace avec des valeurs prédéterminées de A, B, R, N choisies de manière parfaitement aléatoire...
Je me suis montré trop perfectionniste, j'aurais dû partir ainsi : étant données des valeurs de A, B, R, N sélectionnées pour que ça marche, quelle est la valeur de l'angle $\alpha$ et ne pas me montrer plus royaliste que le Roi et vouloir savoir si ça marchait pour n'importe quelles valeurs choisies arbitrairement...

D'ailleurs au passage, je constate que tu n'as pas répondu à cette question :
Soient A, B, R, N telles que A= 800 cm, B = 600 cm, R=32 cm, N=8 spires, peux-tu loger ces 8 spires, sans perte de place (= en occupant toute la longueur et toute la largeur du rectangle) ?
Dommage la réponse aurait été édifiante...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
vingt plus quarantetrois
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums