Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 28-05-2006 11:54:09

bk
Invité

optimiser par la fonction de lagrange

comment trouver le minimum de f(x1,x2,x3)=x1 au carré+2*x2 au carré+x3 au carré sachant que :
x1 au carré+3*x1*x2+x2 au carré=1 et
x2+x3 = 4
Pour cela il faut utiliser la méthode de Lagrange

#2 30-05-2006 08:33:45

MasterJ
Membre
Inscription : 09-05-2006
Messages : 10

Re : optimiser par la fonction de lagrange

Quand tu parles de la méthode de Lagrange... tu parles d'utiliser ça : http://www.bibmath.net/dico/index.php3? … ntite.html
ou bien autre chose ?
Je verrais bien comment résoudre le problème, mais pas en utilisant Lagrange...

Sinon, penses à utiliser la touche ² (juste à gauche du 1, sous echap...), ça rendra plus lisible ce que tu écris... ^^

Hors ligne

#3 30-05-2006 10:59:35

bk
Invité

Re : optimiser par la fonction de lagrange

Non il ne s'agit pas d'utiliser l'identité de Lagrange mais d'utiliser la fonction de Lagrange bien connue pour résoudre les problèmes d'extremum avec contraintes d'égalités cette fonction est définie par :
L(x,l)=f(x)+l'g(x) où l' est un vecteur ligne dont les composantes sont les multiplicateurs de Lagrange et f(x) est la fonction qu'on veut optimiser et g(x)=0 les contraintesd'égalités qui est une fonction vectorielle.

#4 31-05-2006 09:10:13

MasterJ
Membre
Inscription : 09-05-2006
Messages : 10

Re : optimiser par la fonction de lagrange

Il s'agit d'optimisation combinatoire...(cf http://fr.wikipedia.org/wiki/Optimisati … 9matiques) ).... perso moi j'utilise plutôt la programmation linéaire pour ce genre de problème... Pour utilise Lagrange, regardes :
http://fr.wikipedia.org/wiki/Multiplicateur_de_Lagrange

T'as juste un système linéaire à résoudre en fait (si t'as vraiment besoin que je l'explicite, fais-le moi savoir... mais je pense que le deuxième lien est assez explicite ^^)

Dernière modification par MasterJ (31-05-2006 09:11:41)

Hors ligne

#5 06-06-2006 11:39:25

bk
Invité

Re : optimiser par la fonction de lagrange

j'ai essayé de transformer en un problème d'optimisation avec une seule contrainte d'égalité en exprimant x3 en fonction de x2 et à injecter dans la fonction objectif j'ai obtenu :Minimiser x1au carré+3*(x2au carré)-8*x2+16 avec la contrainte:x1au carré+3*x1*x2+(x2 au carré)=1.Quand on applique la méthode avec le Lagrangien on trouve qu'il faut résoudre le système: (2+2*m)x1+3*m*x2=0,
3*m*x1+(4+2*m)x2=8, x1au carré+3*x1*x2+(x2 au carré)=1 où m est le multiplicateur de Lagrange ceci est un système non linéaire puisque les inconnues sont m,x1,x2.

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt dix-huit moins trente
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums