$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}}
\newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}}
\newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)}
\newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n}
\newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}}
\newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)}
\newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th}
\DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card}
\DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im}
\DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr}
\DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp}
\newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}}
\newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle}
\newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]}
\newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle}
$$

Bibm@th
Equation des ondes
On appelle équation des ondes l'équation aux dérivées partielles
u est une fonction définie sur Rn×R, les n premières coordonnées
étant les coordonnées d'espace et la dernière le temps.
est le laplacien de u par rapport aux coordonnées d'espace, c'est-à-dire
c est la constante de vitesse de propagation de l'onde. Par exemple, pour le son, c vaut environ 343 m/s.
En dimension (d'espace) 1, l'équation des ondes s'appelle encore équation des cordes vibrantes.
On prouve que u est solution de cette équation si et seulement si il existe deux fonctions f et g telles que
u(x,t)=f(x-ct)+g(x+ct).
Consulter aussi...